On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition

被引:0
|
作者
Tom Hutchcroft
机构
[1] California Institute of Technology,The Division of Physics, Mathematics and Astronomy
来源
关键词
Percolation; Critical phenomena; Mean-field; Differential inequalities; Hierarchical models; Diagrammatic estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new derivation of mean-field percolation critical behaviour from the triangle condition that is quantitatively much better than previous proofs when the triangle diagram ∇pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{p_c}$$\end{document} is large. In contrast to earlier methods, our approach continues to yield bounds of reasonable order when the triangle diagram ∇p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _p$$\end{document} is unbounded but diverges slowly as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document}, as is expected to occur in percolation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} at the upper-critical dimension d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=6$$\end{document}. Indeed, we show in particular that if the triangle diagram diverges polylogarithmically as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document} then mean-field critical behaviour holds to within a polylogarithmic factor. We apply the methods we develop to deduce that for long-range percolation on the hierarchical lattice, mean-field critical behaviour holds to within polylogarithmic factors at the upper-critical dimension. As part of the proof, we introduce a new method for comparing diagrammatic sums on general transitive graphs that may be of independent interest.
引用
收藏
相关论文
共 50 条
  • [31] Mean-field theory for percolation models of the Ising type
    Chayes, L
    Coniglio, A
    Machta, J
    Shtengel, K
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) : 53 - 66
  • [32] Cluster distribution in mean-field percolation: Scaling and universality
    Rudnick, J
    Nakmahachalasint, P
    Gaspari, G
    PHYSICAL REVIEW E, 1998, 58 (05): : 5596 - 5601
  • [33] Mean-field bounds for Poisson-Boolean percolation
    Dewan, Vivek
    Muirhead, Stephen
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [34] Mean-Field Theory for Percolation Models of the Ising Type
    L. Chayes
    A. Coniglio
    J. Machta
    K. Shtengel
    Journal of Statistical Physics, 1999, 94 : 53 - 66
  • [35] FINTIE-SIZE SCALING FOR MEAN-FIELD PERCOLATION
    GAVEAU, B
    SCHULMAN, LS
    JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) : 613 - 634
  • [36] Derivation of mean-field equations for stochastic particle systems
    Grosskinsky, Stefan
    Jatuviriyapornchai, Watthanan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) : 1455 - 1475
  • [37] Mean-field derivation of Landau-like equations
    Carrillo, Jose Antonio
    Guo, Shuchen
    Jabin, Pierre-Emmanuel
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [38] MSA FOR SEGREGATING LIQUID-MIXTURES - CROSSOVER FROM MEAN-SPHERICAL TO MEAN-FIELD EXPONENTS
    HAFNER, J
    JANK, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 70 (01): : 81 - 86
  • [39] Symbolic Derivation of Mean-Field PDEs from Lattice-Based Models
    Koutschan, Christoph
    Ranetbauer, Helene
    Regensburger, Georg
    Wolfram, Marie-Therese
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 27 - 33
  • [40] Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems
    Ogawa, Shun
    Yamaguchi, Yoshiyuki Y.
    PHYSICAL REVIEW E, 2015, 91 (06):