On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition

被引:0
|
作者
Tom Hutchcroft
机构
[1] California Institute of Technology,The Division of Physics, Mathematics and Astronomy
来源
关键词
Percolation; Critical phenomena; Mean-field; Differential inequalities; Hierarchical models; Diagrammatic estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new derivation of mean-field percolation critical behaviour from the triangle condition that is quantitatively much better than previous proofs when the triangle diagram ∇pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{p_c}$$\end{document} is large. In contrast to earlier methods, our approach continues to yield bounds of reasonable order when the triangle diagram ∇p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _p$$\end{document} is unbounded but diverges slowly as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document}, as is expected to occur in percolation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} at the upper-critical dimension d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=6$$\end{document}. Indeed, we show in particular that if the triangle diagram diverges polylogarithmically as p↑pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \uparrow p_c$$\end{document} then mean-field critical behaviour holds to within a polylogarithmic factor. We apply the methods we develop to deduce that for long-range percolation on the hierarchical lattice, mean-field critical behaviour holds to within polylogarithmic factors at the upper-critical dimension. As part of the proof, we introduce a new method for comparing diagrammatic sums on general transitive graphs that may be of independent interest.
引用
收藏
相关论文
共 50 条
  • [1] On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition
    Hutchcroft, Tom
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [2] PERCOLATION CRITICAL EXPONENTS UNDER THE TRIANGLE CONDITION
    BARSKY, DJ
    AIZENMAN, M
    [J]. ANNALS OF PROBABILITY, 1991, 19 (04): : 1520 - 1536
  • [3] Analytical derivation of critical exponents of the dynamic phase transition in the mean-field approximation
    Gallardo, R. A.
    Idigoras, O.
    Landeros, P.
    Berger, A.
    [J]. PHYSICAL REVIEW E, 2012, 86 (05):
  • [4] GAP EXPONENTS FOR PERCOLATION PROCESSES WITH TRIANGLE CONDITION
    NGUYEN, BG
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (1-2) : 235 - 243
  • [5] CORNER CRITICAL EXPONENTS FROM THE MEAN-FIELD RENORMALIZATION-GROUP
    INDEKEU, JO
    MENU, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : L523 - L528
  • [6] Nonclassical critical exponents out of mean-field results
    Tome, T
    de Oliveira, MJ
    [J]. PHYSICA A, 1998, 260 (1-2): : 99 - 105
  • [7] Critical exponents in mean-field classical spin systems
    Yamaguchi, Yoshiyuki Y.
    Das, Debraj
    Gupta, Shamik
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [8] Dynamical critical exponents for the mean-field Potts glass
    Caltagirone, F.
    Parisi, G.
    Rizzo, T.
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [9] MEAN-FIELD THEORY AND CRITICAL EXPONENTS FOR A RANDOM RESISTOR NETWORK
    STEPHEN, MJ
    [J]. PHYSICAL REVIEW B, 1978, 17 (11): : 4444 - 4453
  • [10] MEAN-FIELD EXPONENTS FOR SELF-ORGANIZED CRITICAL PHENOMENA
    ALSTROM, P
    [J]. PHYSICAL REVIEW A, 1988, 38 (09): : 4905 - 4906