Semisimple weakly symmetric pseudo-Riemannian manifolds

被引:0
|
作者
Zhiqi Chen
Joseph A. Wolf
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] University of California,Department of Mathematics
关键词
Pseudo-Riemannian manifold; Weakly symmetric space; Real form family; Lorentz manifold; Trans-Lorentz manifold; Primary 53C30; 53C35; 22E15; Secondary 53C50; 22E46;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the classification of weakly symmetric pseudo-Riemannian manifolds G / H where G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G / H and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature (n-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1,1)$$\end{document} and trans-Lorentzian signature (n-2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-2,2)$$\end{document}.
引用
收藏
页码:331 / 369
页数:38
相关论文
共 50 条