On the conjugate locus of pseudo-Riemannian manifolds

被引:3
|
作者
Szeghy, D. [1 ]
机构
[1] Eotvos Lorand Univ, Dept Geometry, H-1518 Budapest, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2008年 / 19卷 / 03期
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/S0019-3577(08)80013-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let exp(m) : T(m)M -> M be the exponential map of a Riemannian manifold M at a point m is an element of M. Warner proved that in any neighbourhood of a conjugate point in T(m)M, the map exp(m) is not injective. Moreover, he described the exponential map in a suitable coordinate system in a neighbourhood of a regular conjugate point, these points build an open dense set in the conjugate locus. We will investigate in the pseudo-Riemannian case such subsets, where the results of Warner generalize. For the definition of these subsets of the conjugate locus we use a bilinear form on ker(T(nu)exp(m)), where v is a conjugate point, which will defined by the geodesic flow and the pseudo-Riemannian metric tensor.
引用
收藏
页码:465 / 480
页数:16
相关论文
共 50 条