On the conjugate locus of pseudo-Riemannian manifolds

被引:3
|
作者
Szeghy, D. [1 ]
机构
[1] Eotvos Lorand Univ, Dept Geometry, H-1518 Budapest, Hungary
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2008年 / 19卷 / 03期
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/S0019-3577(08)80013-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let exp(m) : T(m)M -> M be the exponential map of a Riemannian manifold M at a point m is an element of M. Warner proved that in any neighbourhood of a conjugate point in T(m)M, the map exp(m) is not injective. Moreover, he described the exponential map in a suitable coordinate system in a neighbourhood of a regular conjugate point, these points build an open dense set in the conjugate locus. We will investigate in the pseudo-Riemannian case such subsets, where the results of Warner generalize. For the definition of these subsets of the conjugate locus we use a bilinear form on ker(T(nu)exp(m)), where v is a conjugate point, which will defined by the geodesic flow and the pseudo-Riemannian metric tensor.
引用
收藏
页码:465 / 480
页数:16
相关论文
共 50 条
  • [21] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [22] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    [J]. CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [23] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [24] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [25] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875
  • [26] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [27] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [28] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    [J]. Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [29] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [30] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    [J]. Mathematical Notes, 2013, 93 : 810 - 815