Semisimple weakly symmetric pseudo-Riemannian manifolds

被引:0
|
作者
Zhiqi Chen
Joseph A. Wolf
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] University of California,Department of Mathematics
关键词
Pseudo-Riemannian manifold; Weakly symmetric space; Real form family; Lorentz manifold; Trans-Lorentz manifold; Primary 53C30; 53C35; 22E15; Secondary 53C50; 22E46;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the classification of weakly symmetric pseudo-Riemannian manifolds G / H where G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G / H and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature (n-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1,1)$$\end{document} and trans-Lorentzian signature (n-2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-2,2)$$\end{document}.
引用
收藏
页码:331 / 369
页数:38
相关论文
共 50 条
  • [1] Semisimple weakly symmetric pseudo-Riemannian manifolds
    Chen, Zhiqi
    Wolf, Joseph A.
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (02): : 331 - 369
  • [2] Pseudo-Riemannian weakly symmetric manifolds
    Chen, Zhiqi
    Wolf, Joseph A.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (03) : 381 - 390
  • [3] Pseudo-Riemannian weakly symmetric manifolds
    Zhiqi Chen
    Joseph A. Wolf
    [J]. Annals of Global Analysis and Geometry, 2012, 41 : 381 - 390
  • [4] On weakly conformally symmetric pseudo-Riemannian manifolds
    Mantica, Carlo Alberto
    Suh, Young Jin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (03)
  • [5] Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension
    Bo Zhang
    Zhiqi Chen
    Shaoqiang Deng
    [J]. Czechoslovak Mathematical Journal, 2019, 69 : 811 - 835
  • [6] Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension
    Zhang, Bo
    Chen, Zhiqi
    Deng, Shaoqiang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 811 - 835
  • [7] WEAKLY SYMMETRIC PSEUDO-RIEMANNIAN NILMANIFOLDS
    Wolf, Joseph A.
    Chen, Zhiqi
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (03) : 541 - 572
  • [8] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Dusek, Zdenek
    Kowalski, Oldrich
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 319 - 326
  • [9] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Zdeněk Dušek
    Oldřich Kowalski
    [J]. Monatshefte für Mathematik, 2012, 165 : 319 - 326
  • [10] On quarter-symmetric metric connections on pseudo-Riemannian manifolds
    Hirica, Iulia Elena
    Nicolescu, Liviu
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 56 - 65