Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension

被引:0
|
作者
Zhang, Bo [1 ,2 ]
Chen, Zhiqi [1 ,2 ]
Deng, Shaoqiang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, 94 Weijin Rd, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, 94 Weijin Rd, Tianjin 300071, Peoples R China
关键词
pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold;
D O I
10.21136/CMJ.2019.0515-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions 2 and 3, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive 3-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a 3-dimensional reductive 2-fold symmetric pseudo-Riemannian manifold must be globally symmetric.
引用
收藏
页码:811 / 835
页数:25
相关论文
共 50 条
  • [1] Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension
    Bo Zhang
    Zhiqi Chen
    Shaoqiang Deng
    [J]. Czechoslovak Mathematical Journal, 2019, 69 : 811 - 835
  • [2] Pseudo-Riemannian weakly symmetric manifolds
    Chen, Zhiqi
    Wolf, Joseph A.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (03) : 381 - 390
  • [3] Pseudo-Riemannian weakly symmetric manifolds
    Zhiqi Chen
    Joseph A. Wolf
    [J]. Annals of Global Analysis and Geometry, 2012, 41 : 381 - 390
  • [4] On weakly conformally symmetric pseudo-Riemannian manifolds
    Mantica, Carlo Alberto
    Suh, Young Jin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (03)
  • [5] Semisimple weakly symmetric pseudo-Riemannian manifolds
    Zhiqi Chen
    Joseph A. Wolf
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2018, 88 : 331 - 369
  • [6] Semisimple weakly symmetric pseudo-Riemannian manifolds
    Chen, Zhiqi
    Wolf, Joseph A.
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (02): : 331 - 369
  • [7] WEAKLY SYMMETRIC PSEUDO-RIEMANNIAN NILMANIFOLDS
    Wolf, Joseph A.
    Chen, Zhiqi
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (03) : 541 - 572
  • [8] Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension
    Globke, Wolfgang
    Nikolayevsky, Yuri
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 : 475 - 489
  • [9] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Dusek, Zdenek
    Kowalski, Oldrich
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 319 - 326
  • [10] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Zdeněk Dušek
    Oldřich Kowalski
    [J]. Monatshefte für Mathematik, 2012, 165 : 319 - 326