Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension

被引:4
|
作者
Globke, Wolfgang [1 ]
Nikolayevsky, Yuri [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
METRICS; NONEXISTENCE; SUBGROUPS;
D O I
10.1016/j.difgeo.2017.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be pseudo-Riemannian homogeneous Einstein manifold of finite volume, and suppose a connected Lie group G acts transitively and isometrically on M. In this situation, the metric on M induces a bilinear form <., .> on the Lie algebra g of G which is nil-invariant, a property closely related to invariance. We study such spaces M in three important cases. First, we assume <., .> is invariant, in which case the Einstein property requires that G is either solvable or semisimple. Next, we investigate the case where G is solvable. Here, M is compact and M = G/Gamma for a lattice Gamma in G. We show that in dimensions less or equal to 7, compact quotients M = G Gamma exist only for nilpotent groups G. We conjecture that this is true for any dimension. In fact, this holds if Schanuel's Conjecture on transcendental numbers is true. Finally, we consider semisimple Lie groups G, and find that M splits as a pseudo-Riemannian product of Einstein quotients for the compact and the non compact factors of G. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 50 条
  • [1] On locally homogeneous pseudo-Riemannian compact Einstein manifolds
    Bochenski, Maciej
    Tralle, Aleksy
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [2] Einstein-like Pseudo-Riemannian Homogeneous Manifolds of Dimension Four
    Amirhesam Zaeim
    Ali Haji-Badali
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 3455 - 3468
  • [3] Einstein-like Pseudo-Riemannian Homogeneous Manifolds of Dimension Four
    Zaeim, Amirhesam
    Haji-Badali, Ali
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3455 - 3468
  • [4] ON LOCALLY HOMOGENEOUS COMPACT PSEUDO-RIEMANNIAN MANIFOLDS
    Bochenski, Maciej
    Jastrzebski, Piotr
    Tralle, Aleksy
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 150 (01) : 135 - 139
  • [5] On Pseudo-Riemannian Cyclic Homogeneous Manifolds of Dimension Four
    Tohidfar, Atefeh
    Zaeim, Amirhesam
    [J]. JOURNAL OF LIE THEORY, 2021, 31 (01) : 169 - 187
  • [6] SPIN STRUCTURES ON COMPACT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
    D. V. ALEKSEEVSKY
    I. CHRYSIKOS
    [J]. Transformation Groups, 2019, 24 : 659 - 689
  • [7] SPIN STRUCTURES ON COMPACT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
    Alekseevsky, D. V.
    Chrysikos, I.
    [J]. TRANSFORMATION GROUPS, 2019, 24 (03) : 659 - 689
  • [8] Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension
    Bo Zhang
    Zhiqi Chen
    Shaoqiang Deng
    [J]. Czechoslovak Mathematical Journal, 2019, 69 : 811 - 835
  • [9] Pseudo-Riemannian Weakly Symmetric Manifolds of Low Dimension
    Zhang, Bo
    Chen, Zhiqi
    Deng, Shaoqiang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 811 - 835
  • [10] FLAT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
    WOLF, JA
    [J]. GEOMETRIAE DEDICATA, 1995, 57 (01) : 111 - 120