A comparison of the eigenvalues of the Dirac and Laplace operators on a two-dimensional torus

被引:0
|
作者
Ilka Agricola
Bernd Ammann
Thomas Friedrich
机构
[1] Humboldt-Universität zu Berlin,
[2] Institut für Mathematik,undefined
[3] ¶Sitz: Ziegelstraße 13a,undefined
[4] Unter den Linden 6,undefined
[5] D-10099 Berlin,undefined
[6] Germany.¶e-mail: agricola@mathematik.hu-berlin.de; friedric@mathematik.hu-berlin.de,undefined
[7] Universität Freiburg,undefined
[8] Mathematisches Institut,undefined
[9] Eckerstr. 1,undefined
[10] D-79104 Freiburg,undefined
[11] Germany. e-mail: ammann@mathematik.uni-freiburg.de,undefined
来源
manuscripta mathematica | 1999年 / 100卷
关键词
Mathematics Subject Classification (1991):58G25, 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensional torus with respect to the trivial spin structure. In particular, we compute their variation up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and discuss several families of examples.
引用
收藏
页码:231 / 258
页数:27
相关论文
共 50 条
  • [31] Coding of a translation of the two-dimensional torus
    Chevallier, Nicolas
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 157 (02): : 101 - 130
  • [32] BOUNDS ON EIGENVALUES OF LAPLACE AND SCHROEDINGER OPERATORS
    LIEB, E
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) : 751 - 753
  • [33] On negative eigenvalues of generalized Laplace operators
    Albeverio, S
    Karwowski, W
    Koshmanenko, V
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (03) : 359 - 387
  • [34] Two-dimensional Laplace source quantization
    Peric, ZH
    Jovkovic, JD
    Nikolic, ZJ
    [J]. TELSIKS 2001, VOL 1 & 2, PROCEEDINGS, 2001, : 33 - 36
  • [35] Laplace transformations and spectral theory of two-dimensional semidiscrete and discrete hyperbolic Schrodinger operators
    Oblomkov, AA
    Penskoi, AV
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (18) : 1089 - 1126
  • [36] Absence of eigenvalues of Dirac type operators
    Okaji, T
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS: IN MEMORY OF JEAN LERAY, 2003, 52 : 157 - 176
  • [37] On the algebra of symmetries of Laplace and Dirac operators
    Hendrik De Bie
    Roy Oste
    Joris Van der Jeugt
    [J]. Letters in Mathematical Physics, 2018, 108 : 1905 - 1953
  • [38] On the algebra of symmetries of Laplace and Dirac operators
    De Bie, Hendrik
    Oste, Roy
    Van der Jeugt, Joris
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (08) : 1905 - 1953
  • [39] Multiplicities of the eigenvalues of periodic Dirac operators
    Djakov, P
    Mityagin, B
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (01) : 178 - 216
  • [40] On Nodal Sets for Dirac and Laplace Operators
    Christian Bär
    [J]. Communications in Mathematical Physics, 1997, 188 : 709 - 721