On Nodal Sets for Dirac and Laplace Operators

被引:0
|
作者
Christian Bär
机构
[1] Mathematisches Institut,
[2] Universität Freiburg,undefined
[3] Eckerstraße 1,undefined
[4] D-79104 Freiburg,undefined
[5] Germany.¶E-mail: baer@mathematik.uni-freiburg.de,undefined
来源
关键词
Manifold; Riemannian Manifold; Dirac Equation; Laplace Operator; Differential Form;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the nodal set (zero set) of a solution of a generalized Dirac equation on a Riemannian manifold has codimension 2 at least. If the underlying manifold is a surface, then the nodal set is discrete. We obtain a quick proof of the fact that the nodal set of an eigenfunction for the Laplace-Beltrami operator on a Riemannian manifold consists of a smooth hypersurface and a singular set of lower dimension. We also see that the nodal set of a Δ-harmonic differential form on a closed manifold has codimension 2 at least; a fact which is not true if the manifold is not closed. Examples show that all bounds are optimal.
引用
收藏
页码:709 / 721
页数:12
相关论文
共 50 条
  • [1] On nodal sets for Dirac and Laplace operators
    Bar, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (03) : 709 - 721
  • [2] Laplace and Dirac operators on graphs
    Casiday, Beata
    Contreras, Ivan
    Meyer, Thomas
    Mi, Sabrina
    Spingarn, Ethan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (02): : 325 - 365
  • [3] On the algebra of symmetries of Laplace and Dirac operators
    Hendrik De Bie
    Roy Oste
    Joris Van der Jeugt
    [J]. Letters in Mathematical Physics, 2018, 108 : 1905 - 1953
  • [4] On the algebra of symmetries of Laplace and Dirac operators
    De Bie, Hendrik
    Oste, Roy
    Van der Jeugt, Joris
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (08) : 1905 - 1953
  • [5] Spectral boundary conditions for generalizations of Laplace and Dirac operators
    Grubb, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) : 243 - 280
  • [7] On the domain of Dirac and Laplace type operators on stratified spaces
    Hartmann, Luiz
    Lesch, Matthias
    Vertman, Boris
    [J]. JOURNAL OF SPECTRAL THEORY, 2018, 8 (04) : 1295 - 1348
  • [8] The local counting function of operators of Dirac and Laplace type
    Li, Liangpan
    Strohmaier, Alexander
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 104 : 204 - 228
  • [9] Spectral Boundary Conditions for Generalizations of Laplace and Dirac Operators
    Gerd Grubb
    [J]. Communications in Mathematical Physics, 2003, 240 : 243 - 280
  • [10] GEODESICS AND NODAL SETS OF LAPLACE EIGENFUNCTIONS ON HYPERBOLIC MANIFOLDS
    Judge, Chris
    Mondal, Sugata
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) : 4543 - 4550