Kernel Characterization of an Interval Function

被引:0
|
作者
Aubry C. [1 ]
Desmare R. [1 ]
Jaulin L. [2 ]
机构
[1] Ecole Navale / IRENAV, BCRM Brest Ecole Navale, CC600, Brest Cedex 9
[2] ENSTA Bretagne, LABSTICC, 2 rue François Verny, Brest
关键词
Interval analysis; Kernel; Localization; Loop closure; Robotics;
D O I
10.1007/s11786-014-0206-9
中图分类号
学科分类号
摘要
This paper proposes a set-membership approach to characterize the kernel of an interval-valued function. In the context of a bounded-error estimation, this formulation makes it possible to embed all uncertainties of the problem inside the interval function and thus to avoid bisections with respect to all these uncertainties. To illustrate the principle of the approach, two testcases taken from robotics will be presented. The first testcase deals with the characterization of all loops of a mobile robot from proprioceptive measurements only. The second testcase is the localization of a robot from range-only measurements. © 2014, Springer Basel.
引用
收藏
页码:379 / 390
页数:11
相关论文
共 50 条
  • [41] Probit Transformation for Kernel Density Estimation on the Unit Interval
    Geenens, Gery
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 346 - 358
  • [42] ON AN INTEGRAL AS AN INTERVAL FUNCTION
    Saric, Branko
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 53 - 56
  • [43] On an integral as an interval function
    Sarić, Branko
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2016, 78 (04): : 53 - 56
  • [44] A matrix characterization of interval and proper interval graphs
    Mertzios, George B.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 332 - 337
  • [45] ON THE KERNEL FUNCTION OF AN ORTHONORMAL SYSTEM
    SCHIFFER, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (03) : 236 - 236
  • [46] THE KERNEL FUNCTION IN THE GEOMETRY OF MATRICES
    MITCHELL, J
    DUKE MATHEMATICAL JOURNAL, 1952, 19 (04) : 575 - 583
  • [47] On the Kernel Rule for Function Classification
    C. Abraham
    G. Biau
    B. Cadre
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 619 - 633
  • [48] Dislocation Hyperbolic Kernel Function
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (03) : 1021 - 1034
  • [49] The Bergman kernel and the green function
    Malyshev V.A.
    Journal of Mathematical Sciences, 1997, 87 (2) : 3366 - 3380
  • [50] Multiclass Kernel Function Evaluation
    Wang, Tinghua
    Cai, Caiyun
    Liao, Yan
    AUTOMATIC MANUFACTURING SYSTEMS II, PTS 1 AND 2, 2012, 542-543 : 1438 - +