Dislocation Hyperbolic Kernel Function

被引:0
|
作者
Ramirez, Lennin Mallma [1 ]
Maculan, Nelson [1 ]
Xavier, Adilson Elias [1 ]
Xavier, Vinicius Layter [2 ]
机构
[1] Univ Fed Rio de Janeiro, Syst Engn & Comp Sci Program, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Math & Stat, Rio De Janeiro, Brazil
关键词
Dislocation hyperbolic function; Fenchel conjugate; kernel function; self-concordant; CONVEX; INFORMATION; ALGORITHM; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new kernel function is introduced in Mathematical Optimization. This function is called the dislocation hyperbolic kernel function. It is based on the dislocation hyperbolic function. Finally we present some applications of this new function.
引用
收藏
页码:1021 / 1034
页数:14
相关论文
共 50 条
  • [1] A note on the dislocation hyperbolic transformation function
    Ramirez, Lennin Mallma
    Maculan, Nelson
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (04) : 3521 - 3524
  • [2] Special function representations of the Poisson kernel on hyperbolic spaces
    Richard Olu Awonusika
    Journal of Mathematical Chemistry, 2018, 56 : 825 - 849
  • [3] Special function representations of the Poisson kernel on hyperbolic spaces
    Awonusika, Richard Olu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (03) : 825 - 849
  • [4] Poisson kernel and Green function of the ball in real hyperbolic spaces
    Byczkowski, T.
    Malecki, J.
    POTENTIAL ANALYSIS, 2007, 27 (01) : 1 - 26
  • [5] Poisson Kernel and Green Function of the Ball in Real Hyperbolic Spaces
    T. Byczkowski
    J. Małecki
    Potential Analysis, 2007, 27
  • [6] Poisson kernel and Green function of balls for complex hyperbolic Brownian motion
    Zak, Tomasz
    STUDIA MATHEMATICA, 2007, 183 (02) : 161 - 193
  • [7] Kernel convergence of hyperbolic components
    Krauskopf, B
    Kriete, H
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1137 - 1146
  • [8] Kernel Methods in Hyperbolic Spaces
    Fang, Pengfei
    Harandi, Mehrtash
    Petersson, Lars
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10645 - 10654
  • [9] The heat kernel on hyperbolic space
    Grigor'yan, A
    Noguchi, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 643 - 650
  • [10] Kernel information for hyperbolic localization
    Wan, Q
    Yang, WL
    Wang, MH
    Peng, YN
    VTC2005-FALL: 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE, 1-4, PROCEEDINGS, 2005, : 2735 - 2737