Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

被引:0
|
作者
Aasi J. [1 ,42 ]
Abadie J. [1 ,42 ]
Abbott B.P. [1 ,42 ]
Abbott R. [1 ,42 ]
Abbott T.D. [9 ]
Abernathy M.R. [1 ,42 ]
Adams C. [3 ]
Adams T. [36 ]
Addesso P. [55 ]
Adhikari R.X. [1 ,42 ]
Affeldt C. [4 ,11 ]
Aguiar O.D. [75 ]
Ajith P. [1 ,42 ]
Allen B. [4 ,5 ,11 ]
Ceron E.A. [5 ]
Amariutei D. [8 ]
Anderson S.B. [1 ,42 ]
Anderson W.G. [5 ]
Arai K. [1 ,42 ]
Araya M.C. [1 ,42 ]
Arceneaux C. [29 ]
Ast S. [4 ,11 ]
Aston S.M. [3 ]
Atkinson D. [7 ]
Aufmuth P. [4 ,11 ]
Aulbert C. [4 ,11 ]
Austin L. [1 ,42 ]
Aylott B.E. [10 ]
Babak S. [12 ]
Baker P.T. [13 ]
Ballmer S. [25 ]
Bao Y. [8 ]
Barayoga J.C. [1 ,42 ]
Barker D. [7 ]
Barr B. [2 ]
Barsotti L. [15 ]
Barton M.A. [7 ]
Bartos I. [17 ]
Bassiri R. [2 ,6 ]
Batch J. [7 ]
Bauchrowitz J. [4 ,11 ]
Behnke B. [12 ]
Bell A.S. [2 ]
Bell C. [2 ]
Bergmann G. [4 ,11 ]
Berliner J.M. [7 ]
Bertolini A. [4 ,11 ]
Betzwieser J. [3 ]
Beveridge N. [2 ]
Beyersdorf P.T. [19 ]
机构
[1] LIGO, California Institute of Technology, Pasadena
[2] SUPA, University of Glasgow
[3] LIGO, Livingston Observatory, Livingston
[4] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[5] University of Wisconsin-Milwaukee, Milwaukee
[6] Stanford University, Stanford
[7] LIGO, Hanford Observatory, Richland
[8] University of Florida, Gainesville
[9] Louisiana State University, Baton Rouge
[10] University of Birmingham
[11] Leibniz Universität Hannover
[12] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[13] Montana State University, Bozeman
[14] Carleton College, Northfield
[15] LIGO, Massachusetts Institute of Technology, Cambridge
[16] University of Western Australia, Crawley
[17] Columbia University, New York
[18] University of Texas at Brownsville, Brownsville
[19] San Jose State University, San Jose
[20] Moscow State University
[21] Pennsylvania State University, University Park
[22] Washington State University, Pullman
[23] Caltech-CaRT, Pasadena
[24] University of Oregon, Eugene
[25] Syracuse University, Syracuse
[26] Rutherford Appleton Laboratory, HSIC, Chilton-Didcot
[27] University of Maryland, College Park
[28] University of Massachusetts - Amherst, Amherst
[29] University of Mississippi, University
[30] NASA, Goddard Space Flight Center, Greenbelt
[31] Tsinghua University
[32] University of Michigan, Ann Arbor
[33] Charles Sturt University, Wagga Wagga
[34] Australian National University, Canberra
[35] University of Melbourne, Parkville
[36] Cardiff University, Cardiff CF24, AA
[37] University of Salerno, INFN (Sezione di Napoli)
[38] University of Sheffield
[39] Inter-University Centre for Astronomy and Astrophysics
[40] Southern University and A and M College, Baton Rouge
[41] University of Minnesota, Minneapolis
[42] California Institute of Technology, Pasadena
[43] Northwestern University, Evanston
[44] University of Texas at Austin, Austin
[45] MTA-Eotvos University, Lendulet A.R.G.
[46] Embry-Riddle Aeronautical University, Prescott 86301, AZ
[47] National Astronomical Observatory of Japan
[48] University of Adelaide, Adelaide
[49] Universitat de les Illes Balears
[50] University of Southampton
来源
Barsotti, L. (lisabar@ligo.mit.edu) | 1600年 / Nature Publishing Group卷 / 07期
基金
英国科学技术设施理事会; 美国国家航空航天局; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Michelson interferometers - Observatories - Shot noise - Signal detection - Quantum noise - Gravitational effects - Laser interferometry;
D O I
10.1038/nphoton.2013.177
中图分类号
学科分类号
摘要
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1-4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity. © 2013 Macmillan Publishers Limited.
引用
收藏
页码:613 / 619
页数:6
相关论文
共 50 条
  • [21] SQUEEZED STATES FOR INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    GEABANACLOCHE, J
    LEUCHS, G
    JOURNAL OF MODERN OPTICS, 1987, 34 (6-7) : 793 - 811
  • [22] Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO 600
    Bergamin F.
    Lough J.
    Schreiber E.
    Grote H.
    Mehmet M.
    Vahlbruch H.
    Affeldt C.
    Andric T.
    Bisht A.
    Brinkmann M.
    Kringel V.
    Lück H.
    Mukund N.
    Nadji S.
    Sorazu B.
    Strain K.
    Weinert M.
    Danzmann K.
    Optics Express, 2023, 31 (23) : 38443 - 38456
  • [23] A Squeezed light source for advanced gravitational wave detectors
    Oelker, E.
    Isogai, T.
    Tse, M.
    Mansell, G.
    Miller, J.
    Matichard, F.
    Fritschel, P.
    Barsotti, L.
    Mavalvala, N.
    Evans, M.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [24] Squeezed light for advanced gravitational wave detectors and beyond
    Oelker, E.
    Barsotti, L.
    Dwyer, S.
    Sigg, D.
    Mavalvala, N.
    OPTICS EXPRESS, 2014, 22 (17): : 21106 - 21121
  • [25] Quantum squeezed light in gravitational-wave detectors
    Chua, S. S. Y.
    Slagmolen, B. J. J.
    Shaddock, D. A.
    McClelland, D. E.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (18)
  • [26] A gravitational wave detector operating beyond the quantum shot-noise limit: Squeezed light in application
    Schnabel, Roman
    ICAP 2012 - 23RD INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS, 2013, 57
  • [27] Demonstration of the optical AC coupling technique at the advanced LIGO gravitational wave detector
    Kaufer, Steffen
    Kasprzack, Marie
    Frolov, Valera
    Willke, Benno
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
  • [28] First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory
    Grote, H.
    Danzmann, K.
    Dooley, K. L.
    Schnabel, R.
    Slutsky, J.
    Vahlbruch, H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [29] Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types
    Kondrashov, I. S.
    Simakov, D. A.
    Khalili, F. Ya.
    Danilishin, S. L.
    PHYSICAL REVIEW D, 2008, 78 (06):
  • [30] Angular instability due to radiation pressure in the LIGO gravitational-wave detector
    Hirose, Eiichi
    Kawabe, Keita
    Sigg, Daniel
    Adhikari, Rana
    Saulson, Peter R.
    APPLIED OPTICS, 2010, 49 (18) : 3474 - 3484