Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

被引:0
|
作者
Aasi J. [1 ,42 ]
Abadie J. [1 ,42 ]
Abbott B.P. [1 ,42 ]
Abbott R. [1 ,42 ]
Abbott T.D. [9 ]
Abernathy M.R. [1 ,42 ]
Adams C. [3 ]
Adams T. [36 ]
Addesso P. [55 ]
Adhikari R.X. [1 ,42 ]
Affeldt C. [4 ,11 ]
Aguiar O.D. [75 ]
Ajith P. [1 ,42 ]
Allen B. [4 ,5 ,11 ]
Ceron E.A. [5 ]
Amariutei D. [8 ]
Anderson S.B. [1 ,42 ]
Anderson W.G. [5 ]
Arai K. [1 ,42 ]
Araya M.C. [1 ,42 ]
Arceneaux C. [29 ]
Ast S. [4 ,11 ]
Aston S.M. [3 ]
Atkinson D. [7 ]
Aufmuth P. [4 ,11 ]
Aulbert C. [4 ,11 ]
Austin L. [1 ,42 ]
Aylott B.E. [10 ]
Babak S. [12 ]
Baker P.T. [13 ]
Ballmer S. [25 ]
Bao Y. [8 ]
Barayoga J.C. [1 ,42 ]
Barker D. [7 ]
Barr B. [2 ]
Barsotti L. [15 ]
Barton M.A. [7 ]
Bartos I. [17 ]
Bassiri R. [2 ,6 ]
Batch J. [7 ]
Bauchrowitz J. [4 ,11 ]
Behnke B. [12 ]
Bell A.S. [2 ]
Bell C. [2 ]
Bergmann G. [4 ,11 ]
Berliner J.M. [7 ]
Bertolini A. [4 ,11 ]
Betzwieser J. [3 ]
Beveridge N. [2 ]
Beyersdorf P.T. [19 ]
机构
[1] LIGO, California Institute of Technology, Pasadena
[2] SUPA, University of Glasgow
[3] LIGO, Livingston Observatory, Livingston
[4] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[5] University of Wisconsin-Milwaukee, Milwaukee
[6] Stanford University, Stanford
[7] LIGO, Hanford Observatory, Richland
[8] University of Florida, Gainesville
[9] Louisiana State University, Baton Rouge
[10] University of Birmingham
[11] Leibniz Universität Hannover
[12] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[13] Montana State University, Bozeman
[14] Carleton College, Northfield
[15] LIGO, Massachusetts Institute of Technology, Cambridge
[16] University of Western Australia, Crawley
[17] Columbia University, New York
[18] University of Texas at Brownsville, Brownsville
[19] San Jose State University, San Jose
[20] Moscow State University
[21] Pennsylvania State University, University Park
[22] Washington State University, Pullman
[23] Caltech-CaRT, Pasadena
[24] University of Oregon, Eugene
[25] Syracuse University, Syracuse
[26] Rutherford Appleton Laboratory, HSIC, Chilton-Didcot
[27] University of Maryland, College Park
[28] University of Massachusetts - Amherst, Amherst
[29] University of Mississippi, University
[30] NASA, Goddard Space Flight Center, Greenbelt
[31] Tsinghua University
[32] University of Michigan, Ann Arbor
[33] Charles Sturt University, Wagga Wagga
[34] Australian National University, Canberra
[35] University of Melbourne, Parkville
[36] Cardiff University, Cardiff CF24, AA
[37] University of Salerno, INFN (Sezione di Napoli)
[38] University of Sheffield
[39] Inter-University Centre for Astronomy and Astrophysics
[40] Southern University and A and M College, Baton Rouge
[41] University of Minnesota, Minneapolis
[42] California Institute of Technology, Pasadena
[43] Northwestern University, Evanston
[44] University of Texas at Austin, Austin
[45] MTA-Eotvos University, Lendulet A.R.G.
[46] Embry-Riddle Aeronautical University, Prescott 86301, AZ
[47] National Astronomical Observatory of Japan
[48] University of Adelaide, Adelaide
[49] Universitat de les Illes Balears
[50] University of Southampton
来源
Barsotti, L. (lisabar@ligo.mit.edu) | 1600年 / Nature Publishing Group卷 / 07期
基金
英国科学技术设施理事会; 美国国家航空航天局; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Michelson interferometers - Observatories - Shot noise - Signal detection - Quantum noise - Gravitational effects - Laser interferometry;
D O I
10.1038/nphoton.2013.177
中图分类号
学科分类号
摘要
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1-4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity. © 2013 Macmillan Publishers Limited.
引用
收藏
页码:613 / 619
页数:6
相关论文
共 50 条
  • [11] Squeezed Light for Gravitational Wave Detection
    Schnabel, Roman
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [12] Squeezed light for gravitational wave detectors
    Schnabel, Roman
    Quantum Information with Continous Variables of Atoms and Light, 2007, : 345 - 366
  • [13] Phase control of squeezed vacuum states of light in gravitational wave detectors
    Dooley, K. L.
    Schreiber, E.
    Vahlbruch, H.
    Affeldt, C.
    Leong, J. R.
    Wittel, H.
    Grote, H.
    OPTICS EXPRESS, 2015, 23 (07): : 8235 - 8245
  • [14] Improved sensitivity in a gravitational wave interferometer and implications for LIGO
    Abramovici, A
    Althouse, W
    Camp, J
    Durance, D
    Giaime, JA
    Gillespie, A
    Kawamura, S
    Kuhnert, A
    Lyons, T
    Raab, FJ
    Savage, RL
    Shoemaker, D
    Sievers, L
    Spero, R
    Vogt, R
    Weiss, R
    Whitcomb, S
    Zucker, M
    PHYSICS LETTERS A, 1996, 218 (3-6) : 157 - 163
  • [15] Improved sensitivity in a gravitational wave interferometer and implications for LIGO
    LIGO Project, California Institute of Technology, M / S 51-33, Pasadena, CA 91125, United States
    不详
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3-6 (157-163):
  • [16] Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm
    Meylahn, Fabian
    Willke, Benno
    Vahlbruch, Henning
    PHYSICAL REVIEW LETTERS, 2022, 129 (12)
  • [17] Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy
    Martynov, D. V.
    Hall, E. D.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Adams, C.
    Adhikari, R. X.
    Anderson, R. A.
    Anderson, S. B.
    Arai, K.
    Arain, M. A.
    Aston, S. M.
    Austin, L.
    Ballmer, S. W.
    Barbet, M.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Batch, J. C.
    Bell, A. S.
    Belopolski, I.
    Bergman, J.
    Betzwieser, J.
    Billingsley, G.
    Birch, J.
    Biscans, S.
    Biwer, C.
    Black, E.
    Blair, C. D.
    Bogan, C.
    Bork, R.
    Bridges, D. O.
    Brooks, A. F.
    Celerier, C.
    Ciani, G.
    Clara, F.
    Cook, D.
    Countryman, S. T.
    Cowart, M. J.
    Coyne, D. C.
    Cumming, A.
    Cunningham, L.
    Damjanic, M.
    Dannenberg, R.
    Danzmann, K.
    Costa, C. F. Da Silva
    Daw, E. J.
    PHYSICAL REVIEW D, 2016, 93 (11)
  • [18] SENSITIVITY OF HETERODYNE GRAVITATIONAL WAVE DETECTOR
    BERTOTTI, B
    GENERAL RELATIVITY AND GRAVITATION, 1976, 7 (11) : 847 - 855
  • [19] Suppression of the Effect of Parametric Instability in the LIGO Voyager Gravitational Wave Detector
    S. E. Strigin
    Moscow University Physics Bulletin, 2024, 79 (4) : 462 - 468
  • [20] The path to the enhanced and advanced LIGO gravitational-wave detectors
    Smith, J. R.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (11)