Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

被引:0
|
作者
Aasi J. [1 ,42 ]
Abadie J. [1 ,42 ]
Abbott B.P. [1 ,42 ]
Abbott R. [1 ,42 ]
Abbott T.D. [9 ]
Abernathy M.R. [1 ,42 ]
Adams C. [3 ]
Adams T. [36 ]
Addesso P. [55 ]
Adhikari R.X. [1 ,42 ]
Affeldt C. [4 ,11 ]
Aguiar O.D. [75 ]
Ajith P. [1 ,42 ]
Allen B. [4 ,5 ,11 ]
Ceron E.A. [5 ]
Amariutei D. [8 ]
Anderson S.B. [1 ,42 ]
Anderson W.G. [5 ]
Arai K. [1 ,42 ]
Araya M.C. [1 ,42 ]
Arceneaux C. [29 ]
Ast S. [4 ,11 ]
Aston S.M. [3 ]
Atkinson D. [7 ]
Aufmuth P. [4 ,11 ]
Aulbert C. [4 ,11 ]
Austin L. [1 ,42 ]
Aylott B.E. [10 ]
Babak S. [12 ]
Baker P.T. [13 ]
Ballmer S. [25 ]
Bao Y. [8 ]
Barayoga J.C. [1 ,42 ]
Barker D. [7 ]
Barr B. [2 ]
Barsotti L. [15 ]
Barton M.A. [7 ]
Bartos I. [17 ]
Bassiri R. [2 ,6 ]
Batch J. [7 ]
Bauchrowitz J. [4 ,11 ]
Behnke B. [12 ]
Bell A.S. [2 ]
Bell C. [2 ]
Bergmann G. [4 ,11 ]
Berliner J.M. [7 ]
Bertolini A. [4 ,11 ]
Betzwieser J. [3 ]
Beveridge N. [2 ]
Beyersdorf P.T. [19 ]
机构
[1] LIGO, California Institute of Technology, Pasadena
[2] SUPA, University of Glasgow
[3] LIGO, Livingston Observatory, Livingston
[4] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[5] University of Wisconsin-Milwaukee, Milwaukee
[6] Stanford University, Stanford
[7] LIGO, Hanford Observatory, Richland
[8] University of Florida, Gainesville
[9] Louisiana State University, Baton Rouge
[10] University of Birmingham
[11] Leibniz Universität Hannover
[12] Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
[13] Montana State University, Bozeman
[14] Carleton College, Northfield
[15] LIGO, Massachusetts Institute of Technology, Cambridge
[16] University of Western Australia, Crawley
[17] Columbia University, New York
[18] University of Texas at Brownsville, Brownsville
[19] San Jose State University, San Jose
[20] Moscow State University
[21] Pennsylvania State University, University Park
[22] Washington State University, Pullman
[23] Caltech-CaRT, Pasadena
[24] University of Oregon, Eugene
[25] Syracuse University, Syracuse
[26] Rutherford Appleton Laboratory, HSIC, Chilton-Didcot
[27] University of Maryland, College Park
[28] University of Massachusetts - Amherst, Amherst
[29] University of Mississippi, University
[30] NASA, Goddard Space Flight Center, Greenbelt
[31] Tsinghua University
[32] University of Michigan, Ann Arbor
[33] Charles Sturt University, Wagga Wagga
[34] Australian National University, Canberra
[35] University of Melbourne, Parkville
[36] Cardiff University, Cardiff CF24, AA
[37] University of Salerno, INFN (Sezione di Napoli)
[38] University of Sheffield
[39] Inter-University Centre for Astronomy and Astrophysics
[40] Southern University and A and M College, Baton Rouge
[41] University of Minnesota, Minneapolis
[42] California Institute of Technology, Pasadena
[43] Northwestern University, Evanston
[44] University of Texas at Austin, Austin
[45] MTA-Eotvos University, Lendulet A.R.G.
[46] Embry-Riddle Aeronautical University, Prescott 86301, AZ
[47] National Astronomical Observatory of Japan
[48] University of Adelaide, Adelaide
[49] Universitat de les Illes Balears
[50] University of Southampton
来源
Barsotti, L. (lisabar@ligo.mit.edu) | 1600年 / Nature Publishing Group卷 / 07期
基金
英国科学技术设施理事会; 美国国家航空航天局; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Michelson interferometers - Observatories - Shot noise - Signal detection - Quantum noise - Gravitational effects - Laser interferometry;
D O I
10.1038/nphoton.2013.177
中图分类号
学科分类号
摘要
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1-4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity. © 2013 Macmillan Publishers Limited.
引用
收藏
页码:613 / 619
页数:6
相关论文
共 50 条
  • [1] Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Affeldt, C.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Ast, S.
    Aston, S. M.
    Atkinson, D.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S.
    Bao, Y.
    Barayoga, J. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J.
    Bauchrowitz, J.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    Bergmann, G.
    Berliner, J. M.
    Bertolini, A.
    Betzwieser, J.
    Beveridge, N.
    Beyersdorf, P. T.
    NATURE PHOTONICS, 2013, 7 (08) : 613 - 619
  • [2] Quantum Noise Reduction in the LIGO Gravitational Wave Interferometer with Squeezed States of Light
    Barsotti, Lisa
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [3] Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light
    Dwyer, S.
    Barsotti, L.
    Chua, S. S. Y.
    Evans, M.
    Factourovich, M.
    Gustafson, D.
    Isogai, T.
    Kawabe, K.
    Khalaidovski, A.
    Lam, P. K.
    Landry, M.
    Mavalvala, N.
    McClelland, D. E.
    Meadors, G. D.
    Mow-Lowry, C. M.
    Schnabel, R.
    Schofield, R. M. S.
    Smith-Lefebvre, N.
    Stefszky, M.
    Vorvick, C.
    Sigg, D.
    OPTICS EXPRESS, 2013, 21 (16): : 19047 - 19060
  • [4] Optimizing gravitational-wave detector design for squeezed light
    Richardson, Jonathan W.
    Pandey, Swadha
    Bytyqi, Edita
    Edo, Tega
    Adhikari, Rana X.
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [5] Optical isolation in the LIGO gravitational wave laser detector in transient states
    Soloviev, A. A.
    Khazanov, E. A.
    QUANTUM ELECTRONICS, 2012, 42 (04) : 367 - 371
  • [6] Squeezed vacuum states of light for gravitational wave detectors
    Barsotti, Lisa
    Harms, Jan
    Schnabel, Roman
    REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
  • [7] Quantum Enhancement of Advanced LIGO Detector Using Squeezed Vacuum States
    Tse, Maggie
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [8] ENHANCED SENSITIVITY OF A GRAVITATIONAL-WAVE DETECTOR
    WALLS, DF
    ZOLLER, P
    PHYSICS LETTERS A, 1981, 85 (02) : 118 - 120
  • [9] Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600
    Demkowicz-Dobrzanski, Rafal
    Banaszek, Konrad
    Schnabel, Roman
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [10] Suspensions thermal noise in the LIGO gravitational wave detector
    González, G
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (21) : 4409 - 4435