We discuss the dynamical analysis in f(R, T) gravity (where R is the Ricci scalar and T is the trace of the energy momentum tensor) for gravitating sources carrying axial symmetry. The self-gravitating system is taken to be anisotropic and the line element describes an axially symmetric geometry avoiding rotation about the symmetry axis and meridional motions (zero vorticity case). The modified field equations for axial symmetry in f(R, T) theory are formulated, together with the dynamical equations. Linearly perturbed dynamical equations lead to the evolution equation carrying the adiabatic index Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document}, which defines the impact of a non-minimal matter to geometry coupling on the range of instability for Newtonian and post-Newtonian approximations.
机构:
Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, IndiaJadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
Rahaman, Monsur
Singh, Ksh Newton
论文数: 0引用数: 0
h-index: 0
机构:
Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
Natl Def Acad, Dept Phys, Pune 411023, Maharashtra, IndiaJadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
Singh, Ksh Newton
Errehymy, Abdelghani
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hassan 2, Fac Sci Ain Chock, Dept Phys, Lab High Energy Phys & Condensed Matter LPHEMaC, BP 5366, Casablanca 20100, MoroccoJadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
Errehymy, Abdelghani
论文数: 引用数:
h-index:
机构:
Rahaman, Farook
Daoud, Mohammed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ibn Tofail, Fac Sci, Dept Phys, BP 133, Kenitra 14000, Morocco
Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, ItalyJadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India