Anisotropic Karmarkar stars in f(R, T)-gravity

被引:0
|
作者
Monsur Rahaman
Ksh. Newton Singh
Abdelghani Errehymy
Farook Rahaman
Mohammed Daoud
机构
[1] Jadavpur University,Department of Mathematics
[2] National Defence Academy,Department of Physics
[3] University of Hassan II,Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn Chock
[4] University of Ibn Tofail,Department of Physics, Faculty of Sciences
[5] Abdus Salam International Centre for Theoretical Physics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this work is devoted to studying the existence of compact spherical systems representing anisotropic matter distributions within the scenario of alternative theories of gravitation, specifically f(R, T) gravity theory. Besides, a noteworthy and achievable choice on the formulation of f(R, T) gravity is made. To provide the complete set of field equations for the anisotropic matter distribution, it is considered that the functional form of f(R, T) as f(R,T)=R+2χT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R, T)=R+2\chi T$$\end{document}, where R and T correspond to scalar curvature and trace of the stress–energy tensor, respectively. Following the embedding class one approach employing the Eisland condition to get a full space–time portrayal interior the astrophysical structure. When the space–time geometry is identified, we construct a suitable anisotropic model by using a new gravitational potential grr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{rr}$$\end{document} which often yields physically motivated solutions that describe the anisotropic matter distribution interior the astrophysical system. The physical availability of the obtained model, represents the physical characteristics of the solution is affirmed by performing several physical tests. It merits referencing that with the help of the observed mass values for six compact stars, we have predicted the exact radii for different values of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-coupling parameter. From this one can convince that the solution predicted the radii in good agreement with the observed values. Since the radius of MSP J0740+6620, the most massive neutron star observed yet is still unknown, we have predicted its radii for different values of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-coupling parameter. These predicted radii exhibit a monotonic diminishing nature as the parameter χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} going from -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} to 1 gradually. The M–R curve generated from our solution can accommodate a variety of compact stars from the less massive (Her X-1) to super massive (MSP J0740+6620). So the present study uncovers that the modified f(R, T) gravity is an appropriate theory to clarify massive astrophysical systems, in any case, for χ=0.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi =0.0$$\end{document} the standard consequences of the general relativity are recovered.
引用
收藏
相关论文
共 50 条
  • [1] Anisotropic Karmarkar stars in f(R, T)-gravity
    Rahaman, Monsur
    Singh, Ksh Newton
    Errehymy, Abdelghani
    Rahaman, Farook
    Daoud, Mohammed
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (03):
  • [2] Physical viability of anisotropic compact stars solutions under Karmarkar condition in f(R, T) theory of gravity
    Zubair, M.
    Mustafa, G.
    Saleem, Rabia
    Javaid, Hina
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (09)
  • [3] Anisotropic quark stars in f(R, T) gravity
    M. Sharif
    Arfa Waseem
    [J]. The European Physical Journal C, 2018, 78
  • [4] Anisotropic quark stars in f(R,T) gravity
    Sharif, M.
    Waseem, Arfa
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (10):
  • [5] Study of anisotropic compact stars in f(R, T, RχξTχξ) gravity
    Sharif, M.
    Naseer, T.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (03):
  • [6] Gravitational collapse for anisotropic radiating star with Karmarkar condition in f(R, T) gravity
    Ahmed, Riaz
    Abbas, G.
    Gudekli, Ertan
    [J]. CHINESE JOURNAL OF PHYSICS, 2021, 72 : 78 - 92
  • [7] Physical behavior of anisotropic compact stars in f(R, T, RμνTμν) gravity
    Sharif, M.
    Waseem, Arfa
    [J]. CANADIAN JOURNAL OF PHYSICS, 2016, 94 (10) : 1024 - 1039
  • [8] Study of Charged Anisotropic Karmarkar Stars in f(R,T2)$f(\mathcal {R},\mathbb {T}∧{2})$ Theory
    Sharif, M.
    Gul, M. Zeeshan
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (4-5):
  • [9] Anisotropic stellar model in F(T, T) gravity under the Karmarkar condition
    Gudekli, Ertan
    Zubair, M.
    Kamran, M. Junaid
    Ahmed, Iftikhar
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (04)
  • [10] Anisotropic compact stars in f(R) gravity
    G. G. L. Nashed
    S. Capozziello
    [J]. The European Physical Journal C, 2021, 81