Anisotropic Karmarkar stars in f(R, T)-gravity

被引:0
|
作者
Monsur Rahaman
Ksh. Newton Singh
Abdelghani Errehymy
Farook Rahaman
Mohammed Daoud
机构
[1] Jadavpur University,Department of Mathematics
[2] National Defence Academy,Department of Physics
[3] University of Hassan II,Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn Chock
[4] University of Ibn Tofail,Department of Physics, Faculty of Sciences
[5] Abdus Salam International Centre for Theoretical Physics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this work is devoted to studying the existence of compact spherical systems representing anisotropic matter distributions within the scenario of alternative theories of gravitation, specifically f(R, T) gravity theory. Besides, a noteworthy and achievable choice on the formulation of f(R, T) gravity is made. To provide the complete set of field equations for the anisotropic matter distribution, it is considered that the functional form of f(R, T) as f(R,T)=R+2χT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R, T)=R+2\chi T$$\end{document}, where R and T correspond to scalar curvature and trace of the stress–energy tensor, respectively. Following the embedding class one approach employing the Eisland condition to get a full space–time portrayal interior the astrophysical structure. When the space–time geometry is identified, we construct a suitable anisotropic model by using a new gravitational potential grr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{rr}$$\end{document} which often yields physically motivated solutions that describe the anisotropic matter distribution interior the astrophysical system. The physical availability of the obtained model, represents the physical characteristics of the solution is affirmed by performing several physical tests. It merits referencing that with the help of the observed mass values for six compact stars, we have predicted the exact radii for different values of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-coupling parameter. From this one can convince that the solution predicted the radii in good agreement with the observed values. Since the radius of MSP J0740+6620, the most massive neutron star observed yet is still unknown, we have predicted its radii for different values of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-coupling parameter. These predicted radii exhibit a monotonic diminishing nature as the parameter χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} going from -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} to 1 gradually. The M–R curve generated from our solution can accommodate a variety of compact stars from the less massive (Her X-1) to super massive (MSP J0740+6620). So the present study uncovers that the modified f(R, T) gravity is an appropriate theory to clarify massive astrophysical systems, in any case, for χ=0.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi =0.0$$\end{document} the standard consequences of the general relativity are recovered.
引用
收藏
相关论文
共 50 条
  • [21] Behavior of Anisotropic Compact Stars in f(R, ?) Gravity
    M.Farasat Shamir
    Adnan Malik
    [J]. Communications in Theoretical Physics, 2019, 71 (05) : 599 - 609
  • [22] Behavior of Anisotropic Compact Stars in f(R, φ) Gravity
    Shamir, M. Farasat
    Malik, Adnan
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (05) : 599 - 609
  • [23] Gravastars with Karmarkar condition in f(R, T2) gravity
    Sharif, M.
    Naz, Saba
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (11):
  • [24] Charged anisotropic Finch–Skea–Bardeen spheres in f(R) gravity with Karmarkar condition
    M. Farasat Shamir
    Ammara Usman
    Tayyaba Naz
    [J]. The European Physical Journal Plus, 136
  • [25] Study on Anisotropic Strange Stars in f(T,T) Gravity
    Salako, Ines G.
    Khlopov, M.
    Ray, Saibal
    Arouko, M. Z.
    Saha, Pameli
    Debnath, Ujjal
    [J]. UNIVERSE, 2020, 6 (10)
  • [26] Anisotropic strange quintessence stars in f(T) gravity
    G. Abbas
    Shahid Qaisar
    M. A. Meraj
    [J]. Astrophysics and Space Science, 2015, 357
  • [27] Anisotropic strange quintessence stars in f(T) gravity
    Abbas, G.
    Qaisar, Shahid
    Meraj, M. A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (02)
  • [28] Study of gravitational collapse for anisotropic Karmarkar star in minimally coupled f (R) gravity
    Nazar, H.
    Abbas, G.
    [J]. CHINESE JOURNAL OF PHYSICS, 2022, 79 : 124 - 140
  • [29] Moment of inertia of slowly rotating anisotropic neutron stars in f(R,T) gravity
    Pretel, Juan M. Z.
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (28)
  • [30] Stability analysis of anisotropic stars in f(R, T) gravity through cracking technique
    I. Noureen
    Ali Raza
    S. A. Mardan
    [J]. The European Physical Journal C, 83