The Alignment and Fusion of Multimodal 3D Serial Sectioning Datasets

被引:0
|
作者
L. T. Nguyen
D. J. Rowenhorst
机构
[1] National Research Council Postdoctoral Associate at The U.S. Naval Research Laboratory,
[2] The U.S. Naval Research Laboratory,undefined
来源
JOM | 2021年 / 73卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
As an example of data fusion in the context of 3D characterization of materials, this article demonstrates the procedures necessary to align and fuse separate imaging modes, traditional backscattered electron imaging (BSE) and electron backscattered diffraction mapping (EBSD), from serial-sectioning data. The fused data form a unified 3D reconstruction of additively manufactured 316L stainless steel processed by laser powder-bed fusion. We show that, by combining the relatively low-information yet high-fidelity BSE image stack with the more data-rich yet spatially distorted EBSD maps, the 3D reconstruction can leverage the strengths of both imaging techniques. The fully automated alignment procedures and frameworks rely on a number of optimized image warping techniques, with the result that spatial alignment errors are on the order of 0–3 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu {\hbox {m}}$$\end{document} within a region of interest that is >1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$> 1$$\end{document} mm.
引用
收藏
页码:3272 / 3284
页数:12
相关论文
共 50 条
  • [41] Multimodal Token Fusion and Optimization for 3D Human Mesh Reconstruction with Transformers
    Jiang, Yang
    Wang, Sunli
    Sun, Mingyang
    Kou, Dongliang
    Xie, Qiangbin
    Zhang, Lihuang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VI, 2025, 15036 : 593 - 605
  • [42] MMFN: Multimodal Information Fusion Networks for 3D Model Classification and Retrieval
    Nie, Weizhi
    Liang, Qi
    Wang, Yixin
    Wei, Xing
    Su, Yuting
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 16 (04)
  • [43] Multimodal fusion via voting network for 3D object detection in indoors
    Li, Jianxin
    Si, Guannan
    Liang, Xinyu
    An, Zhaoliang
    Tian, Pengxin
    Zhou, Fengyu
    Wang, Xiaoliang
    PATTERN RECOGNITION, 2025, 164
  • [44] GIMI: A New Evaluation Index for 3D Multimodal Medical Image Fusion
    Wang, Na
    Zhang, Wenyao
    Li, Dawei
    2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, : 25 - 29
  • [45] 3D face alignment through fusion of head pose information and features
    So, Jaehyun
    Han, Youngjoon
    IMAGE AND VISION COMPUTING, 2024, 151
  • [46] Alignment of 3D models
    Chaouch, Mohamed
    Verroust-Blondet, Anne
    GRAPHICAL MODELS, 2009, 71 (1-6) : 63 - 76
  • [47] An Automatic Multimodal Data Registration Strategy for 2D/3D Information Fusion
    Schierl, Jonathan
    Asari, Vijayan
    Singer, Nina
    Aspiras, Theus
    Stokes, Andrew
    Keaffaber, Brett
    Van Rynbach, Andre
    Decker, Kevin
    Rabb, David
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100
  • [48] Fusion of Complementary 2D and 3D Mesostructural Datasets Using Generative Adversarial Networks
    Dahari, Amir
    Kench, Steve
    Squires, Isaac
    Cooper, Samuel J.
    ADVANCED ENERGY MATERIALS, 2023, 13 (02)
  • [49] Spatially adaptive 3D inverse for optical sectioning
    Paliy, Dmitriy
    Katkovnik, Vladimir
    Egiazarian, Karen
    COMPUTATIONAL IMAGING IV, 2006, 6065
  • [50] Application of Multimodal Image Fusion 3D Reconstruction Technology Combined with 3D Printing Guide Plate in Meningioma Surgery
    Zhao, Jinhai
    Huo, Hongyue
    Jiang, Jianxin
    WORLD NEUROSURGERY, 2025, 196