The Alignment and Fusion of Multimodal 3D Serial Sectioning Datasets

被引:0
|
作者
L. T. Nguyen
D. J. Rowenhorst
机构
[1] National Research Council Postdoctoral Associate at The U.S. Naval Research Laboratory,
[2] The U.S. Naval Research Laboratory,undefined
来源
JOM | 2021年 / 73卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
As an example of data fusion in the context of 3D characterization of materials, this article demonstrates the procedures necessary to align and fuse separate imaging modes, traditional backscattered electron imaging (BSE) and electron backscattered diffraction mapping (EBSD), from serial-sectioning data. The fused data form a unified 3D reconstruction of additively manufactured 316L stainless steel processed by laser powder-bed fusion. We show that, by combining the relatively low-information yet high-fidelity BSE image stack with the more data-rich yet spatially distorted EBSD maps, the 3D reconstruction can leverage the strengths of both imaging techniques. The fully automated alignment procedures and frameworks rely on a number of optimized image warping techniques, with the result that spatial alignment errors are on the order of 0–3 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu {\hbox {m}}$$\end{document} within a region of interest that is >1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$> 1$$\end{document} mm.
引用
收藏
页码:3272 / 3284
页数:12
相关论文
共 50 条
  • [21] 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method
    Yamasaki, S.
    Mitsuhara, M.
    Ikeda, K.
    Hata, S.
    Nakashima, H.
    SCRIPTA MATERIALIA, 2015, 101 : 80 - 83
  • [22] Automated serial sectioning for 3-D analysis of microstructures
    Spowart, Jonathan E.
    SCRIPTA MATERIALIA, 2006, 55 (01) : 5 - 10
  • [23] Quality assurance of serial 3D image registration, fusion, and segmentation
    Sharpe, Michael
    Brock, Kristy K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 71 (01): : S33 - S37
  • [24] Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding
    Li, Ruihuang
    Zhang, Zhengqiang
    He, Chenheng
    Ma, Zhiyuan
    Patel, Vishal M.
    Zhang, Lei
    COMPUTER VISION - ECCV 2024, PT XLIX, 2025, 15107 : 416 - 434
  • [25] Automated alignment of 2D serial images for 3D reconstruction of biological structures
    Wen, HH
    Kao, CM
    Lin, WC
    Chen, CT
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 1347 - 1351
  • [26] Multimodal information fusion based on LSTM for 3D model retrieval
    Liang, Qi
    Xu, Ning
    Wang, Weijie
    Long, Xingjian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 33943 - 33956
  • [27] Gestures recognition based on multimodal fusion by using 3D CNNs
    Zhu, Yimin
    Gao, Qing
    Shi, Hongyan
    Liu, Jinguo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1647 - 1661
  • [28] Multimodal information fusion based on LSTM for 3D model retrieval
    Qi Liang
    Ning Xu
    Weijie Wang
    Xingjian Long
    Multimedia Tools and Applications, 2020, 79 : 33943 - 33956
  • [29] FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection
    Xu, Shaoqing
    Zhou, Dingfu
    Fang, Jin
    Yin, Junbo
    Bin, Zhou
    Zhang, Liangjun
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3047 - 3054
  • [30] 3D digital breast cancer models with multimodal fusion algorithms
    Bessa, Silvia
    Gouveia, Pedro F.
    Carvalho, Pedro H.
    Rodrigues, Catia
    Silva, Nuno L.
    Cardoso, Fatima
    Cardoso, Jaime S.
    Oliveira, Helder P.
    Cardoso, Maria Joao
    BREAST, 2020, 49 : 281 - 290