Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras

被引:0
|
作者
Mohammad Hossein Ahmadi Gandomani
Mohammad Javad Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
关键词
Locally compact group; Jordan derivation; Jordan right derivation; Jordan left derivation; -centralizing mapping; Primary 43A15; Secondary 47B47; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate Jordan derivations, Jordan right derivations and Jordan left derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. We show that any Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is a (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and the zero map is the only Jordan left derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. Then, we prove that the range of a Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is contained into rad(L0∞(G)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {rad}(L_0^\infty ({{\mathcal {G}}})^*)$$\end{document}. Finally, we establish that the product of two Jordan (right) derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is always a derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and there is no nonzero centralizing Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}.
引用
收藏
页码:189 / 204
页数:15
相关论文
共 50 条
  • [31] Notes on Jordan (σ, τ)*-derivations and Jordan triple (σ, τ)*-derivations
    Öznur Gölbaşı
    Emine Koç
    Aequationes mathematicae, 2013, 85 : 581 - 591
  • [32] A note on Jordan σ-derivations of triangular algebras
    Wang, Yu
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 639 - 644
  • [33] Jordan derivations of unital algebras with idempotents
    Benkovic, Dominik
    Sirovnik, Nejc
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2271 - 2284
  • [34] Jordan generalized derivations on triangular algebras
    Li, Yanbo
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 841 - 849
  • [35] Jordan Higher Derivations of Incidence Algebras
    Lizhen Chen
    Zhankui Xiao
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 431 - 442
  • [36] Jordan Higher Derivations of Triangular Algebras
    Yang, Aili
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (01): : 68 - 73
  • [37] Jordan *-Derivations on C*-Algebras and JC*-Algebras
    An, Jong Su
    Cui, Jianlian
    Park, Choonkil
    ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [38] Jordan derivations of full matrix algebras
    Alizadeh, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 574 - 578
  • [39] Characterization of generalized Jordan *-left derivations on real nest algebras
    Zhu, J
    Xiong, CP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 : 325 - 344
  • [40] Jordan higher derivations on triangular algebras
    Xiao, Zhankui
    Wei, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2615 - 2622