Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras

被引:0
|
作者
Mohammad Hossein Ahmadi Gandomani
Mohammad Javad Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
关键词
Locally compact group; Jordan derivation; Jordan right derivation; Jordan left derivation; -centralizing mapping; Primary 43A15; Secondary 47B47; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate Jordan derivations, Jordan right derivations and Jordan left derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. We show that any Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is a (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and the zero map is the only Jordan left derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. Then, we prove that the range of a Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is contained into rad(L0∞(G)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {rad}(L_0^\infty ({{\mathcal {G}}})^*)$$\end{document}. Finally, we establish that the product of two Jordan (right) derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is always a derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and there is no nonzero centralizing Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}.
引用
收藏
页码:189 / 204
页数:15
相关论文
共 50 条
  • [21] Jordan (α,β)-Derivations on Operator Algebras
    Chen, Quanyuan
    Fang, Xiaochun
    Li, Changjing
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [22] Jordan σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (02): : 143 - 155
  • [23] Jordan left derivations at the idempotent elements on reflexive algebras
    Fadaee, Behrooz
    Ghahramani, Hoger
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (3-4): : 261 - 275
  • [24] Characterizations of Additive Jordan Left *-Derivations on C*-Algebras
    Ying YAO
    Guangyu AN
    JournalofMathematicalResearchwithApplications, 2021, 41 (05) : 531 - 536
  • [25] LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS
    Jung, Yong-Soo
    Park, Kyoo-Hong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) : 151 - 157
  • [26] Characterizations of derivations and Jordan derivations on Banach algebras
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2233 - 2239
  • [27] Jordan ε-homomorphisms and Jordan ε-derivations
    Fosner, M
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04): : 595 - 616
  • [28] Jordan Derivations and Lie Derivations on Path Algebras
    Li, Y.
    Wei, F.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 79 - 92
  • [29] Jordan Derivations and Lie Derivations on Path Algebras
    Y. Li
    F. Wei
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 79 - 92
  • [30] Notes on Jordan (σ, τ)*-derivations and Jordan triple (σ, τ)*-derivations
    Golbasi, Oznur
    Koc, Emine
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 581 - 591