Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras

被引:0
|
作者
Mohammad Hossein Ahmadi Gandomani
Mohammad Javad Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
关键词
Locally compact group; Jordan derivation; Jordan right derivation; Jordan left derivation; -centralizing mapping; Primary 43A15; Secondary 47B47; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate Jordan derivations, Jordan right derivations and Jordan left derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. We show that any Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is a (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and the zero map is the only Jordan left derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. Then, we prove that the range of a Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is contained into rad(L0∞(G)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {rad}(L_0^\infty ({{\mathcal {G}}})^*)$$\end{document}. Finally, we establish that the product of two Jordan (right) derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is always a derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and there is no nonzero centralizing Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}.
引用
收藏
页码:189 / 204
页数:15
相关论文
共 50 条
  • [1] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Gandomani, Mohammad Hossein Ahmadi
    Mehdipour, Mohammad Javad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) : 189 - 204
  • [2] The Image of Jordan Left Derivations on Algebras
    Hosseini, Amin
    Fosner, Ajda
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (06): : 53 - 61
  • [3] Left Jordan derivations on Banach algebras
    Ebadian, A.
    Gordji, M. Eshaghi
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2011, 6 (01): : 1 - 6
  • [4] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Ferreira, Bruno L. M.
    Fosner, Ajda
    Moraes, Gabriela C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2779 - 2788
  • [5] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Bruno L. M. Ferreira
    Ajda Fošner
    Gabriela C. Moraes
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2779 - 2788
  • [6] CHARACTERIZATIONS OF JORDAN LEFT DERIVATIONS ON SOME ALGEBRAS
    An, Guangyu
    Ding, Yana
    Li, Jiankui
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (03): : 466 - 481
  • [7] On left Jordan derivations of rings and Banach algebras
    Vukman, Joso
    AEQUATIONES MATHEMATICAE, 2008, 75 (03) : 260 - 266
  • [8] Generalized Jordan left derivations on semiprime algebras
    Dong Han
    Feng Wei
    Monatshefte für Mathematik, 2010, 161 : 77 - 83
  • [9] Jordan generalized left derivations in incline algebras
    Assiry, Abdullah
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (12)
  • [10] Jordan Left Derivations of Generalized Matrix Algebras
    Li Chen-Fang
    Li Yan-Bo
    Communications in Mathematical Research, 2014, 30 (04) : 301 - 306