Stepwise selection of functional covariates in forecasting peak levels of olive pollen

被引:0
|
作者
Manuel Escabias
Mariano J. Valderrama
Ana M. Aguilera
M. Elena Santofimia
M. Carmen Aguilera-Morillo
机构
[1] Universidad de Granada,Facultad de Farmacia
[2] Universidad de Granada,Facultad de Ciencias
[3] Consejería de Educación - Junta de Andalucía,IES La Laguna
关键词
L. airborne pollen; Functional-logit-regression; Selection of functional predictors;
D O I
暂无
中图分类号
学科分类号
摘要
High levels of airborne olive pollen represent a problem for a large proportion of the population because of the many allergies it causes. Many attempts have been made to forecast the concentration of airborne olive pollen, using methods such as time series, linear regression, neural networks, a combination of fuzzy systems and neural networks, and functional models. This paper presents a functional logistic regression model used to study the relationship between olive pollen concentration and different climatic factors, and on this basis to predict the probability of high (and possibly extreme) levels of airborne pollen, selecting the best subset of functional climatic variables by means of a stepwise method based on the conditional likelihood ratio test.
引用
收藏
页码:367 / 376
页数:9
相关论文
共 50 条
  • [31] Feature selection for daily peak load forecasting using a neuro-fuzzy system
    Sung-Yong Son
    Sang-Hong Lee
    Kyungyong Chung
    Joon S. Lim
    Multimedia Tools and Applications, 2015, 74 : 2321 - 2336
  • [32] Feature selection for daily peak load forecasting using a neuro-fuzzy system
    Son, Sung-Yong
    Lee, Sang-Hong
    Chung, Kyungyong
    Lim, Joon S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (07) : 2321 - 2336
  • [33] A recombinant functional variant of the olive pollen allergen Ole e 10 expressed in baculovirus system
    Barral, P
    Serrano, AG
    Batanero, E
    Pérez-Gil, J
    Villalba, M
    Rodríguez, R
    JOURNAL OF BIOTECHNOLOGY, 2006, 121 (03) : 402 - 409
  • [34] STEPWISE GROUP SPARSE REGRESSION (SGSR): GENE-SET-BASED PHARMACOGENOMIC PREDICTIVE MODELS WITH STEPWISE SELECTION OF FUNCTIONAL PRIORS
    Jang, In Sock
    Dienstmann, Rodrigo
    Margolin, Adam A.
    Guinney, Justin
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015 (PSB), 2015, : 32 - 43
  • [35] Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests
    Ricardo Navares
    José Luis Aznarte
    Theoretical and Applied Climatology, 2020, 139 : 163 - 174
  • [36] Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests
    Navares, Ricardo
    Aznarte, Jose Luis
    THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 139 (1-2) : 163 - 174
  • [37] Forecasting of high-resolution electricity consumption with stochastic climatic covariates via a functional time series approach
    Chang, Chih-Hao
    Chen, Zih-Bing
    Huang, Shih-Feng
    APPLIED ENERGY, 2022, 309
  • [38] Peak Troponin I Levels Are Associated with Functional Outcome in Intracerebral Hemorrhage
    Gerner, Stefan T.
    Auerbeck, Katrin
    Spruegel, Maximilian I.
    Sembill, Jochen A.
    Madzar, Dominik
    Goelitz, Philipp
    Hoelter, Philip
    Kuramatsu, Joji B.
    Schwab, Stefan
    Huttner, Hagen B.
    CEREBROVASCULAR DISEASES, 2018, 46 (1-2) : 72 - 81
  • [39] Open-pollination Provides Sufficient Levels of Cross-pollen in Spanish Monovarietal Olive Orchards
    Pinillos, Virginia
    Cuevas, Julian
    HORTSCIENCE, 2009, 44 (02) : 499 - 502
  • [40] Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods
    Jose C. Jimenez-Lopez
    Simeon O. Kotchoni
    María I. Rodríguez-García
    Juan D. Alché
    Journal of Molecular Modeling, 2012, 18 : 4965 - 4984