Stepwise selection of functional covariates in forecasting peak levels of olive pollen

被引:0
|
作者
Manuel Escabias
Mariano J. Valderrama
Ana M. Aguilera
M. Elena Santofimia
M. Carmen Aguilera-Morillo
机构
[1] Universidad de Granada,Facultad de Farmacia
[2] Universidad de Granada,Facultad de Ciencias
[3] Consejería de Educación - Junta de Andalucía,IES La Laguna
关键词
L. airborne pollen; Functional-logit-regression; Selection of functional predictors;
D O I
暂无
中图分类号
学科分类号
摘要
High levels of airborne olive pollen represent a problem for a large proportion of the population because of the many allergies it causes. Many attempts have been made to forecast the concentration of airborne olive pollen, using methods such as time series, linear regression, neural networks, a combination of fuzzy systems and neural networks, and functional models. This paper presents a functional logistic regression model used to study the relationship between olive pollen concentration and different climatic factors, and on this basis to predict the probability of high (and possibly extreme) levels of airborne pollen, selecting the best subset of functional climatic variables by means of a stepwise method based on the conditional likelihood ratio test.
引用
收藏
页码:367 / 376
页数:9
相关论文
共 50 条
  • [21] Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically
    Ribeiro, Helena
    Abreu, Ilda
    Cunha, Mario
    AEROBIOLOGIA, 2017, 33 (04) : 473 - 480
  • [22] Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically
    Helena Ribeiro
    Ilda Abreu
    Mário Cunha
    Aerobiologia, 2017, 33 : 473 - 480
  • [23] StePSIM – a method for stepwise peak selection and identification of metabolites in 1H NMR spectra
    L. P. Ammann
    M. Merritt
    Metabolomics, 2007, 3 : 1 - 11
  • [24] StePSIM -: a method for stepwise peak selection and identification of metabolites in 1H NMR spectra
    Ammann, L. P.
    Merritt, M.
    METABOLOMICS, 2007, 3 (01) : 1 - 11
  • [25] Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count
    Nowosad, Jakub
    Stach, Alfred
    Kasprzyk, Idalia
    Weryszko-Chmielewska, Elzbieta
    Piotrowska-Weryszko, Krystyna
    Puc, Malgorzata
    Grewling, Lukasz
    Pedziszewska, Anna
    Uruska, Agnieszka
    Myszkowska, Dorota
    Chlopek, Kazimiera
    Majkowska-Wojciechowska, Barbara
    AEROBIOLOGIA, 2016, 32 (03) : 453 - 468
  • [26] Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count
    Jakub Nowosad
    Alfred Stach
    Idalia Kasprzyk
    Elżbieta Weryszko-Chmielewska
    Krystyna Piotrowska-Weryszko
    Małgorzata Puc
    Łukasz Grewling
    Anna Pędziszewska
    Agnieszka Uruska
    Dorota Myszkowska
    Kazimiera Chłopek
    Barbara Majkowska-Wojciechowska
    Aerobiologia, 2016, 32 : 453 - 468
  • [27] Uniform convergence rates and automatic variable selection in nonparametric regression with functional and categorical covariates
    Selk, Leonie
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (01) : 264 - 286
  • [28] Forecasting Ice Jam Peak Levels of the Sukhona River near Veliky Ustyug
    Georgievskii, M. V.
    Babkin, A. V.
    Goroshkova, N. I.
    Strizhenok, A. V.
    Semenova, D. A.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2023, 48 (12) : 1059 - 1065
  • [29] Forecasting Ice Jam Peak Levels of the Sukhona River near Veliky Ustyug
    M. V. Georgievskii
    A. V. Babkin
    N. I. Goroshkova
    A. V. Strizhenok
    D. A. Semenova
    Russian Meteorology and Hydrology, 2023, 48 : 1059 - 1065
  • [30] Forecasting olive crop production based on ten consecutive years of monitoring airborne pollen in Andalusia (southern Spain)
    Minero, FJG
    Candau, P
    Morales, J
    Tomas, C
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1998, 69 (03) : 201 - 215