Stepwise selection of functional covariates in forecasting peak levels of olive pollen

被引:0
|
作者
Manuel Escabias
Mariano J. Valderrama
Ana M. Aguilera
M. Elena Santofimia
M. Carmen Aguilera-Morillo
机构
[1] Universidad de Granada,Facultad de Farmacia
[2] Universidad de Granada,Facultad de Ciencias
[3] Consejería de Educación - Junta de Andalucía,IES La Laguna
关键词
L. airborne pollen; Functional-logit-regression; Selection of functional predictors;
D O I
暂无
中图分类号
学科分类号
摘要
High levels of airborne olive pollen represent a problem for a large proportion of the population because of the many allergies it causes. Many attempts have been made to forecast the concentration of airborne olive pollen, using methods such as time series, linear regression, neural networks, a combination of fuzzy systems and neural networks, and functional models. This paper presents a functional logistic regression model used to study the relationship between olive pollen concentration and different climatic factors, and on this basis to predict the probability of high (and possibly extreme) levels of airborne pollen, selecting the best subset of functional climatic variables by means of a stepwise method based on the conditional likelihood ratio test.
引用
收藏
页码:367 / 376
页数:9
相关论文
共 50 条
  • [1] Stepwise selection of functional covariates in forecasting peak levels of olive pollen
    Escabias, Manuel
    Valderrama, Mariano J.
    Aguilera, Ana M.
    Elena Santofimia, M.
    Carmen Aguilera-Morillo, M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (02) : 367 - 376
  • [2] Stepwise selection of covariates for adaptive neural networks using bootstrap
    Katz, AS
    Katz, S
    Chai, A
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 92 - 95
  • [3] FORECASTING PEAK OZONE LEVELS
    SIMPSON, RW
    LAYTON, AP
    ATMOSPHERIC ENVIRONMENT, 1983, 17 (09) : 1649 - 1654
  • [4] Peak-hopping stepwise wavelength selection algorithm
    McShane, MJ
    Cameron, BD
    Coté, GL
    Spiegelman, CH
    OPTICAL DIAGNOSTICS OF BIOLOGICAL FLUIDS IV, PROCEEDINGS OF, 1999, 3599 : 101 - 109
  • [5] Forecasting olive (Olea europaea) crop production by monitoring airborne pollen
    Pilar Candau Fernandez-Mensaque
    Francisco José González Minero
    Julia Morales
    Carmen Tomas
    Aerobiologia, 1998, 14 (2-3) : 185 - 190
  • [6] Forecasting olive (Olea europaea) crop yield based on pollen emission
    Galán, C
    Vázquez, L
    García-Mozo, H
    Domínguez, E
    FIELD CROPS RESEARCH, 2004, 86 (01) : 43 - 51
  • [7] Peak Tree Pollen Levels in New York City
    Smith, A. W.
    Silverman, B.
    Schneider, A. T.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2009, 123 (02) : S140 - S140
  • [8] FORECASTING PEAK POLLUTANT LEVELS FROM METEOROLOGICAL VARIABLES
    ZIOMAS, IC
    MELAS, D
    ZEREFOS, CS
    BAIS, AF
    PALIATSOS, AG
    ATMOSPHERIC ENVIRONMENT, 1995, 29 (24) : 3703 - 3711
  • [9] Functional clustering and linear regression for peak load forecasting
    Goia, Aldo
    May, Caterina
    Fusai, Gianluca
    INTERNATIONAL JOURNAL OF FORECASTING, 2010, 26 (04) : 700 - 711
  • [10] Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain
    Garcia-Mozo, H.
    Chuine, I.
    Aira, M. J.
    Belmonte, J.
    Bermejo, D.
    de la Guardia, C. Diaz
    Elvira, B.
    Gutierrez, M.
    Rodriguez-Rajo, J.
    Ruiz, L.
    Trigo, M. M.
    Tormo, R.
    Valencia, R.
    Galan, C.
    AGRICULTURAL AND FOREST METEOROLOGY, 2008, 148 (03) : 372 - 380