Harnack inequalities and sub-Gaussian estimates for random walks

被引:0
|
作者
A. Grigor'yan
A. Telcs
机构
[1] Department of Mathematics,
[2] London SW7 2BZ,undefined
[3] UK 662 (e-mail: a.grigoryan@ic.ac.uk) ,undefined
[4] IMC,undefined
[5] Graduate School of Business,undefined
[6] Zrinyi u. 14,undefined
[7] Budapest,undefined
[8] 1051,undefined
[9] Hungary (e-mail: h197tel@ella.hu) ,undefined
来源
Mathematische Annalen | 2002年 / 324卷
关键词
Exit Time; Harnack Inequality; Volume Property; Doubling Volume; Parabolic Harnack Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta $\end{document}-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to the sub-Gaussian estimate for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{\beta }$\end{document}. The latter condition can be replaced by a certain estimate of the resistance of annuli.
引用
收藏
页码:521 / 556
页数:35
相关论文
共 50 条
  • [1] Harnack inequalities and sub-Gaussian estimates for random walks
    Grigor'yan, A
    Telcs, A
    MATHEMATISCHE ANNALEN, 2002, 324 (03) : 521 - 556
  • [2] Harnack inequalities and Gaussian estimates for random walks on metric measure spaces*
    Murugan, Mathav
    Saloff-Coste, Laurent
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [3] INEQUALITIES FOR THE DISTRIBUTIONS OF FUNCTIONALS OF SUB-GAUSSIAN VECTORS
    Buldygin, V. V.
    Pechuk, E. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 80 : 23 - 33
  • [4] Simulation of a strictly sub-Gaussian random field
    Turchyn, Ievgen
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 183 - 189
  • [5] Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators
    Pascucci, Andrea
    Polidoro, Sergio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 4873 - 4893
  • [6] Unconditional Convergence of Sub-Gaussian Random Series
    Giorgobiani, G.
    Kvaratskhelia, V.
    Menteshashvili, M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (01) : 92 - 101
  • [7] Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators
    Polidoro, S
    Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 365 - 374
  • [8] Weighted Logarithmic Sobolev Inequalities for Sub-Gaussian Measures
    Bin Qian
    Zhengliang Zhang
    Acta Applicandae Mathematicae, 2011, 116
  • [9] Sub-Gaussian estimates of heat kernels on infinite graphs
    Grigor'yan, A
    Telcs, A
    DUKE MATHEMATICAL JOURNAL, 2001, 109 (03) : 451 - 510
  • [10] THE SUB-GAUSSIAN NORM OF A BINARY RANDOM VARIABLE
    Buldygin, V. V.
    Moskvichova, K. K.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 86 : 28 - 42