Semidefinite relaxations for non-convex quadratic mixed-integer programming

被引:1
|
作者
Christoph Buchheim
Angelika Wiegele
机构
[1] Technische Universität Dortmund,Fakultät für Mathematik
[2] Alpen-Adria-Universität Klagenfurt,Institut für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
90C10; 90C11; 90C20; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.
引用
下载
收藏
页码:435 / 452
页数:17
相关论文
共 50 条
  • [21] Mixed-integer quadratic programming is in NP
    Alberto Del Pia
    Santanu S. Dey
    Marco Molinaro
    Mathematical Programming, 2017, 162 : 225 - 240
  • [22] A semidefinite programming method for integer convex quadratic minimization
    Jaehyun Park
    Stephen Boyd
    Optimization Letters, 2018, 12 : 499 - 518
  • [23] Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
    Saxena, Anureet
    Bonami, Pierre
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2010, 124 (1-2) : 383 - 411
  • [24] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [25] Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
    Anureet Saxena
    Pierre Bonami
    Jon Lee
    Mathematical Programming, 2011, 130 : 359 - 413
  • [26] Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
    Saxena, Anureet
    Bonami, Pierre
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2011, 130 (02) : 359 - 413
  • [27] Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
    Anureet Saxena
    Pierre Bonami
    Jon Lee
    Mathematical Programming, 2010, 124 : 383 - 411
  • [28] Complex portfolio selection via convex mixed-integer quadratic programming: a survey
    Mencarelli, Luca
    D'Ambrosio, Claudia
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2019, 26 (02) : 389 - 414
  • [29] A FEASIBLE ACTIVE SET METHOD WITH REOPTIMIZATION FOR CONVEX QUADRATIC MIXED-INTEGER PROGRAMMING
    Buchheim, Christoph
    de Santis, Marianna
    Lucidi, Stefano
    Rinaldi, Francesco
    Trieu, Long
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (03) : 1695 - 1714
  • [30] On duality theory for non-convex semidefinite programming
    Sun, Wenyu
    Li, Chengjin
    Sampaio, Raimundo J. B.
    ANNALS OF OPERATIONS RESEARCH, 2011, 186 (01) : 331 - 343