Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

被引:0
|
作者
Anureet Saxena
Pierre Bonami
Jon Lee
机构
[1] Axioma Inc.,Laboratoire d’Informatique Fondamentale de Marseille
[2] CNRS-Aix Marseille Universités,undefined
[3] IBM T.J. Watson Research Center,undefined
来源
Mathematical Programming | 2010年 / 124卷
关键词
90C26 Nonconvex programming; global optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Y =  xxT. We use the non-convex constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ Y - x x^T \preccurlyeq 0}$$\end{document} to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − xxT with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ Y - x x^T \succcurlyeq 0}$$\end{document} to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.
引用
收藏
页码:383 / 411
页数:28
相关论文
共 50 条
  • [1] Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
    Saxena, Anureet
    Bonami, Pierre
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2010, 124 (1-2) : 383 - 411
  • [2] Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
    Saxena, Anureet
    Bonami, Pierre
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2011, 130 (02) : 359 - 413
  • [3] Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations
    Anureet Saxena
    Pierre Bonami
    Jon Lee
    Mathematical Programming, 2011, 130 : 359 - 413
  • [4] Disjunctive cuts for non-convex mixed integer quadratically constrained programs
    Saxena, Anureet
    Bonami, Pierre
    Lee, Jon
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 17 - +
  • [5] Global solution of non-convex quadratically constrained quadratic programs
    Elloumi, Sourour
    Lambert, Amelie
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (01): : 98 - 114
  • [6] Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
    Mitchell, John E.
    Pang, Jong-Shi
    Yu, Bin
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 120 - 136
  • [7] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Buchheim, Christoph
    Wiegele, Angelika
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 435 - 452
  • [8] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Christoph Buchheim
    Angelika Wiegele
    Mathematical Programming, 2013, 141 : 435 - 452
  • [9] Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II
    Benjamin Beach
    Robert Burlacu
    Andreas Bärmann
    Lukas Hager
    Robert Hildebrand
    Computational Optimization and Applications, 2024, 87 : 893 - 934
  • [10] Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I
    Beach, Benjamin
    Burlacu, Robert
    Baermann, Andreas
    Hager, Lukas
    Hildebrand, Robert
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (03) : 835 - 891