Semidefinite relaxations for non-convex quadratic mixed-integer programming

被引:1
|
作者
Christoph Buchheim
Angelika Wiegele
机构
[1] Technische Universität Dortmund,Fakultät für Mathematik
[2] Alpen-Adria-Universität Klagenfurt,Institut für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
90C10; 90C11; 90C20; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.
引用
收藏
页码:435 / 452
页数:17
相关论文
共 50 条
  • [1] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Buchheim, Christoph
    Wiegele, Angelika
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 435 - 452
  • [2] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Burer, Samuel
    Letchford, Adam N.
    [J]. MATHEMATICAL PROGRAMMING, 2014, 143 (1-2) : 231 - 256
  • [3] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Samuel Burer
    Adam N. Letchford
    [J]. Mathematical Programming, 2014, 143 : 231 - 256
  • [4] Gap inequalities for non-convex mixed-integer quadratic programs
    Galli, Laura
    Kaparis, Konstantinos
    Letchford, Adam N.
    [J]. OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 297 - 300
  • [5] Gap inequalities for non-convex mixed-integer quadratic programs
    DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
    不详
    [J]. Oper Res Lett, 5 (297-300):
  • [6] A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs
    Buchheim, Christoph
    Montenegro, Maribel
    Wiegele, Angelika
    [J]. COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 110 - 122
  • [7] Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I
    Beach, Benjamin
    Burlacu, Robert
    Baermann, Andreas
    Hager, Lukas
    Hildebrand, Robert
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (03) : 835 - 891
  • [8] Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II
    Benjamin Beach
    Robert Burlacu
    Andreas Bärmann
    Lukas Hager
    Robert Hildebrand
    [J]. Computational Optimization and Applications, 2024, 87 : 893 - 934
  • [9] Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I
    Benjamin Beach
    Robert Burlacu
    Andreas Bärmann
    Lukas Hager
    Robert Hildebrand
    [J]. Computational Optimization and Applications, 2024, 87 : 835 - 891
  • [10] A note on representations of linear inequalities in non-convex mixed-integer quadratic programs
    Letchford, Adam N.
    Grainger, Daniel J.
    [J]. OPERATIONS RESEARCH LETTERS, 2017, 45 (06) : 631 - 634