Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

被引:0
|
作者
J. Ridoux
N. Lardjane
L. Monasse
F. Coulouvrat
机构
[1] CEA,CERMICS
[2] DAM,CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie, Paris 06
[3] DIF,undefined
[4] ENPC,undefined
[5] Sorbonne Universités,undefined
来源
Shock Waves | 2018年 / 28卷
关键词
Shock wave; Geometrical shock dynamics; Kinematic model;
D O I
暂无
中图分类号
学科分类号
摘要
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine–Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model’s approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
引用
收藏
页码:401 / 416
页数:15
相关论文
共 50 条
  • [41] FOCAL SIZE AND EXTRACORPOREAL SHOCK-WAVE DELIVERY - A COMPARISON OF 3 DIFFERENT PHYSICAL SHOCK-WAVE GENERATORS
    JANOWITZ, P
    STUBER, M
    MEIER, T
    STEINER, R
    SCHNEIDER, HT
    ELL, C
    NEUHAUS, H
    OTT, R
    SWOBODNIK, W
    KRATZER, W
    WECHSLER, JG
    DITSCHUNEIT, H
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1990, 115 (51-52) : 1945 - 1949
  • [42] Experimental investigation on the shock-wave load attenuation by geometrical means
    Shachar Berger
    Oren Sadot
    Gabi Ben-Dor
    Shock Waves, 2010, 20 : 29 - 40
  • [43] Experimental investigation on the shock-wave load attenuation by geometrical means
    Berger, Shachar
    Sadot, Oren
    Ben-Dor, Gabi
    SHOCK WAVES, 2010, 20 (01) : 29 - 40
  • [44] NUMERICAL MODELING OF SHOCK-WAVE DYNAMICS IN A COMPOSITE
    IVANOV, MF
    PARSHIKOV, AN
    HIGH TEMPERATURE, 1993, 31 (01) : 112 - 118
  • [45] DYNAMICS OF THE CLOSING OF PORES AT THE SHOCK-WAVE FRONT
    DUNIN, SZ
    SURKOV, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (03): : 550 - 558
  • [46] CHARACTERIZATION OF DISTURBANCE PROPAGATION IN WEAK SHOCK-WAVE REFLECTIONS
    SASOH, A
    TAKAYAMA, K
    JOURNAL OF FLUID MECHANICS, 1994, 277 : 331 - 345
  • [47] STELLAR COLLAPSE - ADIABATIC HYDRODYNAMICS AND SHOCK-WAVE PROPAGATION
    MULLER, E
    ROZYCZKA, M
    HILLEBRANDT, W
    ASTRONOMY & ASTROPHYSICS, 1980, 81 (03) : 288 - 292
  • [48] HYDRODYNAMIC SHOCK-WAVE PROPAGATION AFTER ELECTRICAL BREAKDOWN
    ZAHN, M
    FORSTER, EO
    KELLEY, EF
    HEBNER, RE
    JOURNAL OF ELECTROSTATICS, 1982, 12 (APR) : 535 - 546
  • [49] SHOCK-WAVE PROPAGATION NEAR MELTING STATES IN BISMUTH
    ASAY, JR
    BUTCHER, BM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1105 - 1106
  • [50] SHOCK-WAVE PROPAGATION IN THE NONUNIFORM INTERSTELLAR-MEDIUM
    BISNOVATYIKOGAN, GS
    SILICH, SA
    REVIEWS OF MODERN PHYSICS, 1995, 67 (03) : 661 - 712