Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

被引:0
|
作者
J. Ridoux
N. Lardjane
L. Monasse
F. Coulouvrat
机构
[1] CEA,CERMICS
[2] DAM,CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie, Paris 06
[3] DIF,undefined
[4] ENPC,undefined
[5] Sorbonne Universités,undefined
来源
Shock Waves | 2018年 / 28卷
关键词
Shock wave; Geometrical shock dynamics; Kinematic model;
D O I
暂无
中图分类号
学科分类号
摘要
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine–Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model’s approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A-M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{-}M$$\end{document} relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
引用
收藏
页码:401 / 416
页数:15
相关论文
共 50 条
  • [21] Shock wave focusing using geometrical shock dynamics
    Cates, JE
    Sturtevant, B
    PHYSICS OF FLUIDS, 1997, 9 (10) : 3058 - 3068
  • [22] Revisiting Geometrical Shock Dynamics for blast wave propagation in complex environment
    Ridoux, J.
    Lardjane, N.
    Gomez, T.
    Coulouvrat, F.
    RECENT DEVELOPMENTS IN NONLINEAR ACOUSTICS, 2015, 1685
  • [23] SHOCK-WAVE PROPAGATION THROUGH A GASEOUS MIXTURE
    SHUGAIEV, FV
    KONDRASHOV, AE
    FOMENKO, EN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1985, 26 (01): : 56 - 63
  • [24] SHOCK-WAVE PROPAGATION IN INSTANTANEOUSLY NONLINEAR MATERIALS
    LUBLINER, J
    GREEN, RJ
    JOURNAL DE MECANIQUE, 1970, 9 (04): : 507 - &
  • [25] SHOCK-WAVE PROPAGATION IN AN ELASTOPLASTIC MEDIUM WITH HARDENING
    LIMAREV, AE
    CHERNYSH.AD
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1971, 35 (06): : 1030 - &
  • [26] SHOCK-WAVE PROPAGATION IN A GAS MIXTURE.
    Shugaev, F.V.
    Kondrashov, A.E.
    Fomenko, E.N.
    Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 1985, 40 (01): : 62 - 69
  • [27] PROPAGATION OF A HYPERDETONATION SHOCK-WAVE IN A NONHOMOGENEOUS MEDIUM
    KALISKI, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1978, 26 (04): : 319 - 323
  • [28] SHOCK-WAVE PROPAGATION IN NONLINEAR VISCOELASTIC SOLIDS
    WALSH, EK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (05): : 671 - &
  • [29] WEAK SHOCK-WAVE PROPAGATION IN A RELAXING GAS
    CHOU, DC
    ASTRONAUTICA ACTA, 1972, 17 (4-5): : 625 - &
  • [30] SHOCK-WAVE PROPAGATION IN A GAS WITH VARIABLE DENSITY
    GALKIN, AM
    SHUGAEV, FV
    HIGH TEMPERATURE, 1990, 28 (05) : 748 - 752