Hochschild cohomology of cubic surfaces

被引:0
|
作者
F. Butin
机构
[1] Université de Lyon,Institut Camille Jordan
[2] Université Lyon 1,undefined
[3] CNRS,undefined
[4] UMR5208,undefined
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
Hochschild cohomology; Hochschild homology; cubic surface; Groebner basis; algebraic resolution; quantization; star-product; 53D55; 13P10; 13D03;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the polynomial algebra C[z]:=C[z1,z2,z3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}[{\bf z}] := \mathbb{C}[z_1, z_2, z_3]}$$\end{document} and the polynomial f:=z13+z23+z33+3qz1z2z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f := z^{3}_{1} + z^3_2 + z^3_3 + 3qz_1z_2z_3}$$\end{document}, where q∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in \mathbb{C}}$$\end{document}. Our aim is to compute the Hochschild homology and cohomology of the cubic surface Xf:={z∈C3/f(z)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X}_f := \{{\bf z} \in \mathbb{C}^3/f({\bf z}) = 0\}}$$\end{document}. For explicit computations, we shall make use of a method suggested by M. Kontsevich. Then, we shall develop it in order to determine the Hochschild homology and cohomology by means of multivariate division and Groebner bases. Some formal computations with Maple are also used.
引用
收藏
页码:263 / 282
页数:19
相关论文
共 50 条
  • [1] Hochschild cohomology of cubic surfaces
    Butin, F.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 263 - 282
  • [2] Hochschild Homology and Cohomology of Klein Surfaces
    Butin, Frederic
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [3] On a cohomology of digraphs and Hochschild cohomology
    Grigor'yan, Alexander
    Muranov, Yuri
    Yau, Shing-Tung
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2016, 11 (02) : 209 - 230
  • [4] On a cohomology of digraphs and Hochschild cohomology
    Alexander Grigor’yan
    Yuri Muranov
    Shing-Tung Yau
    Journal of Homotopy and Related Structures, 2016, 11 : 209 - 230
  • [5] Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds
    Huybrechts, Daniel
    Rennemo, Jorgen Vold
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 76 - 99
  • [6] Going from cohomology to Hochschild cohomology
    Sköldberg, E
    JOURNAL OF ALGEBRA, 2005, 288 (02) : 263 - 278
  • [7] Hochschild Cohomology with Support
    Lowen, Wendy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) : 4741 - 4812
  • [8] Hochschild cohomology and extensions
    Kurdiani, RT
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (05) : 975 - 976
  • [9] On Hochschild cohomology of orders
    S. Koenig
    K. Sanada
    N. Snashall
    Archiv der Mathematik, 2003, 81 : 627 - 635
  • [10] Secondary Hochschild Cohomology
    Staic, Mihai D.
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 47 - 56