Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms

被引:0
|
作者
E. Hachem
P. Meliga
A. Goetz
P. Jeken Rico
J. Viquerat
A. Larcher
R. Valette
A. F. Sanches
V. Lannelongue
H. Ghraieb
R. Nemer
Y. Ozpeynirci
T. Liebig
机构
[1] MINES Paris,Department of Neuroradiology
[2] PSL Research University,undefined
[3] Centre de mise en forme des matériaux (CEMEF),undefined
[4] CNRS UMR 7635,undefined
[5] University Hospital Munich (LMU),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to improve the life quality and expectancy of patients. This study aims at identifying and characterizing novel flow-deviator stent devices through a high-fidelity computational framework that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algorithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment of the functional parameters in the implanted state.
引用
收藏
相关论文
共 50 条
  • [21] Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy
    Brydon Eastman
    Michelle Przedborski
    Mohammad Kohandel
    Scientific Reports, 11
  • [22] Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy
    Eastman, Brydon
    Przedborski, Michelle
    Kohandel, Mohammad
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [23] Patient-specific simulation in carotid artery stenting
    Willaert, Willem
    Aggarwal, Rajesh
    Bicknell, Colin
    Hamady, Mo
    Darzi, Ara
    Vermassen, Frank
    Cheshire, Nicholas
    JOURNAL OF VASCULAR SURGERY, 2010, 52 (06) : 1700 - 1705
  • [24] Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms
    Ma, Ding
    Dargush, Gary F.
    Natarajan, Sabareesh K.
    Levy, Elad I.
    Siddiqui, Adnan H.
    Meng, Hui
    JOURNAL OF BIOMECHANICS, 2012, 45 (13) : 2256 - 2263
  • [25] Computational Fluid Dynamics Simulations of Intracranial Aneurysms at Varying Heart Rates: A "Patient-Specific" Study
    Jiang, Jingfeng
    Strother, Charles
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (09):
  • [26] An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms
    Janiga, Gabor
    Daroczy, Laszlo
    Berg, Philipp
    Thevenin, Dominique
    Skalej, Martin
    Beuing, Oliver
    JOURNAL OF BIOMECHANICS, 2015, 48 (14) : 3846 - 3852
  • [27] Patient-specific finite element analysis of popliteal stenting
    Conti, Michele
    Marconi, Michele
    Campanile, Giulia
    Reali, Alessandro
    Adami, Daniele
    Berchiolli, Raffaella
    Auricchio, Ferdinando
    MECCANICA, 2017, 52 (03) : 633 - 644
  • [28] Patient-specific finite element analysis of popliteal stenting
    Michele Conti
    Michele Marconi
    Giulia Campanile
    Alessandro Reali
    Daniele Adami
    Raffaella Berchiolli
    Ferdinando Auricchio
    Meccanica, 2017, 52 : 633 - 644
  • [29] Continuum model for flow diverting stents in 3D patient-specific simulation of intracranial aneurysms
    Li, Sha
    Chopard, Bastien
    Latt, Jonas
    JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 38
  • [30] Fluid-structure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms
    Ruan, Chang
    Yu, Qi
    Hou, Jingyuan
    Ou, Xinying
    Liu, Yi
    Chen, Yu
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2023, 25 (03) : 73 - 85