Square turning maps and their compactifications

被引:0
|
作者
Richard Evan Schwartz
机构
[1] Brown University,
来源
Geometriae Dedicata | 2018年 / 192卷
关键词
Dynamics; Square turning; Piecewise isometries; Polytope exchange transformations; 37E15; 51F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce some infinite rectangle exchange transformations which are based on the simultaneous turning of the squares within a sequence of square grids. We will show that such noncompact systems have higher dimensional dynamical compactifications. In good cases, these compactifications are polytope exchange transformations based on pairs of Euclidean lattices. In each dimension 8m+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8m+4$$\end{document} there is a 4m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4m+2$$\end{document} dimensional family of them. Here m=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0,1,2,\ldots $$\end{document} We studied the case m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} in depth in Schwartz (The octagonal PETs, research monograph, 2012).
引用
收藏
页码:295 / 325
页数:30
相关论文
共 50 条
  • [41] MAPS DETERMINED BY ACTION ON SQUARE-ZERO ELEMENTS
    Wang, Dengyin
    Yu, Xiaoxiang
    Chen, Zhengxin
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4255 - 4262
  • [42] On Dynamics of Triangular Maps of the Square with Zero Topological Entropy
    Pravec, Vojtech
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 761 - 768
  • [43] Square Sierpiński carpets and Lattès maps
    Mario Bonk
    Sergei Merenkov
    Mathematische Zeitschrift, 2020, 296 : 695 - 718
  • [44] Counting square-free monomial Cremona maps
    Costa, Barbara
    Dias, Thiago
    Gondim, Rodrigo
    Machado, Ricardo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 76 - 101
  • [45] Regular maps with square-free Euler characteristic
    Hua, Peice
    Li, Cai Heng
    Zhang, Jia Ben
    Zhou, Hui
    COMMUNICATIONS IN ALGEBRA, 2024,
  • [46] On Dynamics of Triangular Maps of the Square with Zero Topological Entropy
    Vojtěch Pravec
    Qualitative Theory of Dynamical Systems, 2019, 18 : 761 - 768
  • [47] Counting square-free monomial Cremona maps
    Bárbara Costa
    Thiago Dias
    Rodrigo Gondim
    Ricardo Machado
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 76 - 101
  • [48] The trajectory of the turning point is dense for almost all tent maps
    Brucks, K
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1173 - 1183
  • [49] Stability prediction maps in turning of difficult-to-cut materials
    Urbicain, G.
    Palacios, J. A.
    Fernandez, A.
    Rodriguez, A.
    Lopez de Lacalle, L. N.
    Elias-Zuniga, A.
    MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE, (MESIC 2013), 2013, 63 : 514 - 522
  • [50] COMPACTIFICATIONS
    WASILESKI, JS
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (02): : 365 - 371