Square turning maps and their compactifications

被引:0
|
作者
Richard Evan Schwartz
机构
[1] Brown University,
来源
Geometriae Dedicata | 2018年 / 192卷
关键词
Dynamics; Square turning; Piecewise isometries; Polytope exchange transformations; 37E15; 51F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce some infinite rectangle exchange transformations which are based on the simultaneous turning of the squares within a sequence of square grids. We will show that such noncompact systems have higher dimensional dynamical compactifications. In good cases, these compactifications are polytope exchange transformations based on pairs of Euclidean lattices. In each dimension 8m+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8m+4$$\end{document} there is a 4m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4m+2$$\end{document} dimensional family of them. Here m=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0,1,2,\ldots $$\end{document} We studied the case m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} in depth in Schwartz (The octagonal PETs, research monograph, 2012).
引用
收藏
页码:295 / 325
页数:30
相关论文
共 50 条
  • [31] Orientation Preserving Maps of the Square Grid II
    Barany, Imre
    Por, Attila
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 72 (2) : 569 - 602
  • [32] On maps preserving square-zero matrices
    Chebotar, MA
    Ke, WF
    Lee, PH
    JOURNAL OF ALGEBRA, 2005, 289 (02) : 421 - 445
  • [33] ON TOPOLOGICAL-ENTROPY OF TRIANGULAR MAPS OF THE SQUARE
    ALSEDA, L
    KOLYADA, SF
    SNOHA, L
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (01) : 55 - 67
  • [34] A turning point analysis of the ergodic dynamics of iterative maps
    Schmelcher, P
    Diakonos, FK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (11): : 2459 - 2474
  • [35] Turning psychology into policy: a case of square pegs and round holes?
    Carl Walker
    Ewen Speed
    Danny Taggart
    Palgrave Communications, 4 (1)
  • [36] Compactifications, A-compactifications and proximities.
    Dimov, G
    Tironi, G
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 : 87 - 108
  • [37] Turning psychology into policy: a case of square pegs and round holes?
    Walker, Carl
    Speed, Ewen
    Taggart, Danny
    PALGRAVE COMMUNICATIONS, 2018, 4
  • [38] Maps completely preserving idempotents and maps completely preserving square-zero operators
    Hou, Jinchuan
    Huang, Li
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) : 363 - 380
  • [39] Maps completely preserving idempotents and maps completely preserving square-zero operators
    Jinchuan Hou
    Li Huang
    Israel Journal of Mathematics, 2010, 176 : 363 - 380
  • [40] HILBERT MODULES-SQUARE ROOTS OF POSITIVE MAPS
    Skeide, Michael
    QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 27 : 296 - 322