Square turning maps and their compactifications

被引:0
|
作者
Richard Evan Schwartz
机构
[1] Brown University,
来源
Geometriae Dedicata | 2018年 / 192卷
关键词
Dynamics; Square turning; Piecewise isometries; Polytope exchange transformations; 37E15; 51F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce some infinite rectangle exchange transformations which are based on the simultaneous turning of the squares within a sequence of square grids. We will show that such noncompact systems have higher dimensional dynamical compactifications. In good cases, these compactifications are polytope exchange transformations based on pairs of Euclidean lattices. In each dimension 8m+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8m+4$$\end{document} there is a 4m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4m+2$$\end{document} dimensional family of them. Here m=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0,1,2,\ldots $$\end{document} We studied the case m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} in depth in Schwartz (The octagonal PETs, research monograph, 2012).
引用
收藏
页码:295 / 325
页数:30
相关论文
共 50 条