Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis

被引:0
|
作者
Mauro Dragoni
Andrea G. B. Tettamanzi
Célia da Costa Pereira
机构
[1] FBK–IRST,I3S, UMR 7271
[2] Université Nice Sophia Antipolis,undefined
来源
Cognitive Computation | 2015年 / 7卷
关键词
Sentiment analysis; Multi-domain learning; Fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
An emerging field within sentiment analysis concerns the investigation about how sentiment polarities associated with concepts have to be adapted with respect to the different domains in which they are used. In this paper, we explore the use of fuzzy logic for modeling concept polarities, and the uncertainty associated with them, with respect to different domains. The approach is based on the use of a knowledge graph built by combining two linguistic resources, namely WordNet and SenticNet. Such a knowledge graph is then exploited by a graph-propagation algorithm that propagates sentiment information learned from labeled datasets. The system implementing the proposed approach has been evaluated on the Blitzer dataset. The results demonstrate its viability in real-world cases.
引用
收藏
页码:186 / 197
页数:11
相关论文
共 50 条
  • [1] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    COGNITIVE COMPUTATION, 2015, 7 (02) : 186 - 197
  • [2] A Fuzzy System for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 21 - 27
  • [3] ESWC'14 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Cambria, Erik
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 3 - 20
  • [4] FinSenticNet: A Concept-Level Lexicon for Financial Sentiment Analysis
    Du, Kelvin
    Xing, Frank
    Mao, Rui
    Cambria, Erik
    2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023, 2023, : 109 - 114
  • [5] Statistical Approaches to Concept-Level Sentiment Analysis Introduction
    Cambria, Erik
    Schuller, Bjoern
    Liu, Bing
    Wang, Haixun
    Havasi, Catherine
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (03) : 6 - 9
  • [6] ESWC 15 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Dragoni, Mauro
    Presutti, Valentina
    SEMANTIC WEB EVALUATION CHALLENGES, 2015, 548 : 211 - 222
  • [7] Developing a Concept-Level Knowledge Base for Sentiment Analysis in Singlish
    Bajpai, Rajiv
    Ho, Danyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 347 - 361
  • [8] A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data
    Zad, Samira
    Heidari, Maryam
    Jones, James H., Jr.
    Uzuner, Ozlem
    2021 IEEE WORLD AI IOT CONGRESS (AIIOT), 2021, : 285 - 291
  • [9] The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis
    Cambria, Erik
    Poria, Soujanya
    Bisio, Federica
    Bajpai, Rajiv
    Chaturvedi, Iti
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 3 - 22
  • [10] CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language
    Peng, Haiyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 90 - 104