A Fuzzy System for Concept-Level Sentiment Analysis

被引:28
|
作者
Dragoni, Mauro [1 ]
Tettamanzi, Andrea G. B. [2 ]
Pereira, Celia da Costa [2 ]
机构
[1] FBK IRST, Trento, Italy
[2] Univ Nice Sophia Antipolis, UMR 7271, I3S, Sophia Antipolis, France
来源
关键词
Fuzzy set theory - Data mining - Semantics;
D O I
10.1007/978-3-319-12024-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An emerging field within Sentiment Analysis concerns the investigation about how sentiment concepts have to be adapted with respect to the different domains in which they are used. In the context of the Concept-Level Sentiment Analysis Challenge, we presented a system whose aims are twofold: (i) the implementation of a learning approach able to model fuzzy functions used for building the relationships graph representing the appropriateness between sentiment concepts and different domains (Task 1); and (ii) the development of a semantic resource based on the connection between an extended version of WordNet, SenticNet, and ConceptNet, that has been used both for extracting concepts (Task 2) and for classifying sentences within specific domains (Task 3).
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [1] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Mauro Dragoni
    Andrea G. B. Tettamanzi
    Célia da Costa Pereira
    Cognitive Computation, 2015, 7 : 186 - 197
  • [2] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    COGNITIVE COMPUTATION, 2015, 7 (02) : 186 - 197
  • [3] ESWC'14 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Cambria, Erik
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 3 - 20
  • [4] FinSenticNet: A Concept-Level Lexicon for Financial Sentiment Analysis
    Du, Kelvin
    Xing, Frank
    Mao, Rui
    Cambria, Erik
    2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023, 2023, : 109 - 114
  • [5] Statistical Approaches to Concept-Level Sentiment Analysis Introduction
    Cambria, Erik
    Schuller, Bjoern
    Liu, Bing
    Wang, Haixun
    Havasi, Catherine
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (03) : 6 - 9
  • [6] ESWC 15 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Dragoni, Mauro
    Presutti, Valentina
    SEMANTIC WEB EVALUATION CHALLENGES, 2015, 548 : 211 - 222
  • [7] Developing a Concept-Level Knowledge Base for Sentiment Analysis in Singlish
    Bajpai, Rajiv
    Ho, Danyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 347 - 361
  • [8] A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data
    Zad, Samira
    Heidari, Maryam
    Jones, James H., Jr.
    Uzuner, Ozlem
    2021 IEEE WORLD AI IOT CONGRESS (AIIOT), 2021, : 285 - 291
  • [9] The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis
    Cambria, Erik
    Poria, Soujanya
    Bisio, Federica
    Bajpai, Rajiv
    Chaturvedi, Iti
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 3 - 22
  • [10] CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language
    Peng, Haiyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 90 - 104