CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language

被引:3
|
作者
Peng, Haiyun [1 ]
Cambria, Erik [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
关键词
D O I
10.1007/978-3-319-77116-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, sentiment analysis has become a hot topic in natural language processing. Although sentiment analysis research in English is rather mature, Chinese sentiment analysis has just set sail, as the limited amount of sentiment resources in Chinese severely limits its development. In this paper, we present a method for the construction of a Chinese sentiment resource. We utilize both English sentiment resources and the Chinese knowledge base NTU Multi-lingual Corpus. In particular, we first propose a resource based on SentiWordNet and a second version based on SenticNet.
引用
收藏
页码:90 / 104
页数:15
相关论文
共 50 条
  • [1] A Fuzzy System for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 21 - 27
  • [2] ESWC'14 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Cambria, Erik
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 3 - 20
  • [3] FinSenticNet: A Concept-Level Lexicon for Financial Sentiment Analysis
    Du, Kelvin
    Xing, Frank
    Mao, Rui
    Cambria, Erik
    2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023, 2023, : 109 - 114
  • [4] Statistical Approaches to Concept-Level Sentiment Analysis Introduction
    Cambria, Erik
    Schuller, Bjoern
    Liu, Bing
    Wang, Haixun
    Havasi, Catherine
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (03) : 6 - 9
  • [5] ESWC 15 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Dragoni, Mauro
    Presutti, Valentina
    SEMANTIC WEB EVALUATION CHALLENGES, 2015, 548 : 211 - 222
  • [6] Developing a Concept-Level Knowledge Base for Sentiment Analysis in Singlish
    Bajpai, Rajiv
    Ho, Danyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 347 - 361
  • [7] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Mauro Dragoni
    Andrea G. B. Tettamanzi
    Célia da Costa Pereira
    Cognitive Computation, 2015, 7 : 186 - 197
  • [8] A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data
    Zad, Samira
    Heidari, Maryam
    Jones, James H., Jr.
    Uzuner, Ozlem
    2021 IEEE WORLD AI IOT CONGRESS (AIIOT), 2021, : 285 - 291
  • [9] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    COGNITIVE COMPUTATION, 2015, 7 (02) : 186 - 197
  • [10] The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis
    Cambria, Erik
    Poria, Soujanya
    Bisio, Federica
    Bajpai, Rajiv
    Chaturvedi, Iti
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 3 - 22