Robustness of single-cell RNA-seq for identifying differentially expressed genes

被引:0
|
作者
Yong Liu
Jing Huang
Rajan Pandey
Pengyuan Liu
Bhavika Therani
Qiongzi Qiu
Sridhar Rao
Aron M. Geurts
Allen W. Cowley
Andrew S. Greene
Mingyu Liang
机构
[1] Medical College of Wisconsin, Department of Physiology, Center of Systems Molecular Medicine
[2] University of Arizona College of Medicine – Tucson,Department of Physiology
[3] Sir Run Run Shaw Hospital,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province
[4] Zhejiang University School of Medicine,Cancer Center
[5] Zhejiang University,Institute of Translational Medicine
[6] Zhejiang University School of Medicine,Department of Cell Biology, Neurobiology, and Anatomy
[7] Versiti Blood Research Institute,Division of Pediatric Hematology/Oncology/Transplantation
[8] Medical College of Wisconsin,undefined
[9] Medical College of Wisconsin,undefined
[10] The Jackson Laboratory,undefined
来源
BMC Genomics | / 24卷
关键词
RNA-seq; Gene expression; Stem cell; Single cell;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [42] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [43] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [44] Identifying progressive gene network perturbation from single-cell RNA-seq data
    Mukherjee, Sumit
    Carignano, Alberto
    Seelig, Georg
    Lee, Su-In
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5034 - 5040
  • [45] An NMF-based approach to discover overlooked differentially expressed gene regions from single-cell RNA-seq data
    Matsumoto, Hirotaka
    Hayashi, Tetsutaro
    Ozaki, Haruka
    Tsuyuzaki, Koki
    Umeda, Mana
    Iida, Tsuyoshi
    Nakamura, Masaya
    Okano, Hideyuki
    Nikaido, Itoshi
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (01)
  • [46] Identifying differentially spliced genes from two groups of RNA-seq samples
    Wang, Weichen
    Qin, Zhiyi
    Feng, Zhixing
    Wang, Xi
    Zhang, Xuegong
    GENE, 2013, 518 (01) : 164 - 170
  • [47] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386
  • [48] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [49] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [50] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440