Robustness of single-cell RNA-seq for identifying differentially expressed genes

被引:0
|
作者
Yong Liu
Jing Huang
Rajan Pandey
Pengyuan Liu
Bhavika Therani
Qiongzi Qiu
Sridhar Rao
Aron M. Geurts
Allen W. Cowley
Andrew S. Greene
Mingyu Liang
机构
[1] Medical College of Wisconsin, Department of Physiology, Center of Systems Molecular Medicine
[2] University of Arizona College of Medicine – Tucson,Department of Physiology
[3] Sir Run Run Shaw Hospital,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province
[4] Zhejiang University School of Medicine,Cancer Center
[5] Zhejiang University,Institute of Translational Medicine
[6] Zhejiang University School of Medicine,Department of Cell Biology, Neurobiology, and Anatomy
[7] Versiti Blood Research Institute,Division of Pediatric Hematology/Oncology/Transplantation
[8] Medical College of Wisconsin,undefined
[9] Medical College of Wisconsin,undefined
[10] The Jackson Laboratory,undefined
来源
BMC Genomics | / 24卷
关键词
RNA-seq; Gene expression; Stem cell; Single cell;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] RNA-Seq Analysis of Differentially Expressed Genes in Rice under Photooxidation
    Ma, J.
    Zhang, B. -B.
    Wang, F.
    Sun, M. -M.
    Shen, W. -J.
    Lv, C.
    Gao, Z.
    Chen, G. -X.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2017, 64 (05) : 698 - 706
  • [22] DEGnet: Identifying Differentially Expressed Genes Using Deep Neural Network from RNA-Seq Datasets
    Kakati, Tulika
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 130 - 138
  • [23] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Korthauer, Keegan D.
    Chu, Li-Fang
    Newton, Michael A.
    Li, Yuan
    Thomson, James
    Stewart, Ron
    Kendziorski, Christina
    GENOME BIOLOGY, 2016, 17
  • [24] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Keegan D. Korthauer
    Li-Fang Chu
    Michael A. Newton
    Yuan Li
    James Thomson
    Ron Stewart
    Christina Kendziorski
    Genome Biology, 17
  • [25] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [26] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [27] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [28] Identifying cell states in single-cell RNA-seq data at statistically maximal resolution
    Grobecker, Pascal
    Sakoparnig, Thomas
    van Nimwegen, Erik
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [29] Identifying differentially expressed transcripts from RNA-seq data with biological variation
    Glaus, Peter
    Honkela, Antti
    Rattray, Magnus
    BIOINFORMATICS, 2012, 28 (13) : 1721 - 1728
  • [30] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)