Distinct Distances in Homogeneous Sets in Euclidean Space

被引:0
|
作者
Jozsef Solymosi
Csaba D. Toth
机构
[1] Department of Mathematics,
[2] University of British Columbia,undefined
[3] Vancouver,undefined
[4] British Columbia,undefined
[5] V6T 1Z2,undefined
[6] Mathematics,undefined
[7] Massachusetts Institute of Technology,undefined
[8] Cambridge,undefined
[9] MA 02139,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Distinct Distance;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that every homogeneous set of n points in d-dimensional Euclidean space determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n)$\end{document} distinct distances for a constant c(d) > 0. In three-space the above general bound is slightly improved and it is shown that every homogeneous set of n points determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{0.6091})$\end{document} distinct distances.
引用
收藏
页码:537 / 549
页数:12
相关论文
共 50 条
  • [41] Concerning zero-dimensional sets in euclidean space
    Wilder, R. L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 345 - 359
  • [42] FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE
    Wang, Wen
    Wen, Shengyou
    Wen, Zhi-Ying
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 535 - 546
  • [43] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [44] Theorems on the separability of alpha-sets in Euclidean space
    Ushakov, V. N.
    Uspenskii, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 277 - 291
  • [45] Decomposing Euclidean space with a small number of smooth sets
    Steprans, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) : 1461 - 1480
  • [46] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Bachoc, Christine
    Passuello, Alberto
    Thiery, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 783 - 808
  • [47] A remark on two notions of flatness for sets in the Euclidean space
    Violo, Ivan Yuri
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 157 - 171
  • [48] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 291 - 308
  • [49] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Christine Bachoc
    Alberto Passuello
    Alain Thiery
    Discrete & Computational Geometry, 2015, 53 : 783 - 808
  • [50] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S222 - S238