Distinct Distances in Homogeneous Sets in Euclidean Space

被引:0
|
作者
Jozsef Solymosi
Csaba D. Toth
机构
[1] Department of Mathematics,
[2] University of British Columbia,undefined
[3] Vancouver,undefined
[4] British Columbia,undefined
[5] V6T 1Z2,undefined
[6] Mathematics,undefined
[7] Massachusetts Institute of Technology,undefined
[8] Cambridge,undefined
[9] MA 02139,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Distinct Distance;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that every homogeneous set of n points in d-dimensional Euclidean space determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n)$\end{document} distinct distances for a constant c(d) > 0. In three-space the above general bound is slightly improved and it is shown that every homogeneous set of n points determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{0.6091})$\end{document} distinct distances.
引用
收藏
页码:537 / 549
页数:12
相关论文
共 50 条
  • [31] A Linear Separability Criterion for Sets of Euclidean Space
    Z. R. Gabidullina
    Journal of Optimization Theory and Applications, 2013, 158 : 145 - 171
  • [32] A Sampling Theory for Compact Sets in Euclidean Space
    Chazal, Frederic
    Cohen-Steiner, David
    Lieutier, Andre
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (03) : 461 - 479
  • [33] Local groups in Delone sets in the Euclidean space
    Dolbilin, Nikolay
    Shtogrin, Mikhail
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : 452 - 458
  • [34] A Linear Separability Criterion for Sets of Euclidean Space
    Gabidullina, Z. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (01) : 145 - 171
  • [35] Estimate for the chromatic number of Euclidean space with several forbidden distances
    A. V. Berdnikov
    Mathematical Notes, 2016, 99 : 774 - 778
  • [36] Estimate for the Chromatic Number of Euclidean Space with Several Forbidden Distances
    Berdnikov, A. V.
    MATHEMATICAL NOTES, 2016, 99 (5-6) : 774 - 778
  • [37] Sets with few distinct distances do not have heavy lines
    Raz, Orit E.
    Roche-Newton, Oliver
    Sharir, Micha
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1484 - 1492
  • [38] Local Properties in Colored Graphs, Distinct Distances, and Difference Sets
    Cosmin Pohoata
    Adam Sheffer
    Combinatorica, 2019, 39 : 705 - 714
  • [39] Local Properties in Colored Graphs, Distinct Distances, and Difference Sets
    Pohoata, Cosmin
    Sheffer, Adam
    COMBINATORICA, 2019, 39 (03) : 705 - 714
  • [40] Bounds for sets with few distances distinct modulo a prime ideal
    Nozaki, Hiroshi
    ALGEBRAIC COMBINATORICS, 2023, 6 (02):