Distinct Distances in Homogeneous Sets in Euclidean Space

被引:0
|
作者
Jozsef Solymosi
Csaba D. Toth
机构
[1] Department of Mathematics,
[2] University of British Columbia,undefined
[3] Vancouver,undefined
[4] British Columbia,undefined
[5] V6T 1Z2,undefined
[6] Mathematics,undefined
[7] Massachusetts Institute of Technology,undefined
[8] Cambridge,undefined
[9] MA 02139,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Distinct Distance;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that every homogeneous set of n points in d-dimensional Euclidean space determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n)$\end{document} distinct distances for a constant c(d) > 0. In three-space the above general bound is slightly improved and it is shown that every homogeneous set of n points determines at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n^{0.6091})$\end{document} distinct distances.
引用
收藏
页码:537 / 549
页数:12
相关论文
共 50 条