Extremal exponents of random products of conservative diffeomorphisms

被引:0
|
作者
Pablo G. Barrientos
Dominique Malicet
机构
[1] UFF,Instituto de Matemática e Estatística
[2] Université Paris-Est Marne-la-Vallée,LAMA
来源
Mathematische Zeitschrift | 2020年 / 296卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-dense subset of the set of ergodic iterated function systems of conservative diffeomorphisms of a finite-volume manifold of dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, the extremal Lyapunov exponents do not vanish. In particular, the set of non-uniform hyperbolic systems contains a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-dense subset of ergodic random products of independent conservative surface diffeomorphisms.
引用
收藏
页码:1185 / 1207
页数:22
相关论文
共 50 条