Extremal exponents of random products of conservative diffeomorphisms

被引:0
|
作者
Pablo G. Barrientos
Dominique Malicet
机构
[1] UFF,Instituto de Matemática e Estatística
[2] Université Paris-Est Marne-la-Vallée,LAMA
来源
Mathematische Zeitschrift | 2020年 / 296卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-dense subset of the set of ergodic iterated function systems of conservative diffeomorphisms of a finite-volume manifold of dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, the extremal Lyapunov exponents do not vanish. In particular, the set of non-uniform hyperbolic systems contains a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-dense subset of ergodic random products of independent conservative surface diffeomorphisms.
引用
收藏
页码:1185 / 1207
页数:22
相关论文
共 50 条
  • [31] Continuity properties of Lyapunov exponents for surface diffeomorphisms
    Jérôme Buzzi
    Sylvain Crovisier
    Omri Sarig
    Inventiones mathematicae, 2022, 230 : 767 - 849
  • [32] A remark on the Millionshchikov problem on the central exponents of diffeomorphisms
    Bykov, V. V.
    DIFFERENTIAL EQUATIONS, 2014, 50 (11) : 1553 - 1554
  • [33] Large diffeomorphisms and accidental symmetry of the extremal horizon
    Achilleas P. Porfyriadis
    Grant N. Remmen
    Journal of High Energy Physics, 2022
  • [34] RANDOM INTERVAL DIFFEOMORPHISMS
    Gharaei, Masoumeh
    Homburg, Ale Jan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (02): : 241 - 272
  • [35] Large diffeomorphisms and accidental symmetry of the extremal horizon
    Porfyriadis, Achilleas P.
    Remmen, Grant N.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [36] Rational exponents in extremal graph theory
    Bukh, Boris
    Conlon, David
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (07) : 1747 - 1757
  • [37] Critical exponents of extremal Kerr perturbations
    Gralla, Samuel E.
    Zimmerman, Peter
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (09)
  • [38] Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles
    Bezerra, Jamerson
    Sanchez, Adriana
    Tall, El Hadji Yaya
    NONLINEARITY, 2023, 36 (06) : 3467 - 3482
  • [39] THE RELEVANCE OF CONNECTANCE ON THE LYAPUNOV CHARACTERISTIC EXPONENTS OF PRODUCTS OF SYMPLECTIC RANDOM MATRICES
    PALADIN, G
    VULPIANI, A
    PHYSICS LETTERS A, 1986, 118 (01) : 14 - 16
  • [40] Extremal spacings between eigenphases of random unitary matrices and their tensor products
    Smaczynski, Marek
    Tkocz, Tomasz
    Kus, Marek
    Zyczkowski, Karol
    PHYSICAL REVIEW E, 2013, 88 (05):