Positive Exponents for Random Products of Conservative Surface Diffeomorphisms and Some Skew Products

被引:0
|
作者
Davi Obata
Mauricio Poletti
机构
[1] Université Paris-Sud 11,CNRS
[2] Universidade Federal do Rio de Janeiro,Laboratoire de Mathématiques d’Orsay, UMR 8628
关键词
Lyapunov exponents; Non-uniform hyperbolicity; Skew products; Random products of diffeomorphisms; Conservative dynamics; 37D25; 37D30; 37H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that a “typical” random product of conservative surface diffeomorphism has positive Lyapunov exponents. We prove that for any compact oriented surface S, any r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 1$$\end{document}, and any d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, there exists a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-dense subset of Diffvolr(S)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Diff}}^r_{{\text {vol}}}(S)^d$$\end{document} such that if (f1,…,fd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_1, \ldots , f_d)$$\end{document} belongs to this subset, the random product generated by them has positive Lyapunov exponents. Our proof also allows us to deal with more general skew products, for example skew products with a volume preserving Anosov diffeomorphism on the basis, or with a subshift of finite type on the basis preserving a measure with product structure. In these cases we prove the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-density and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-openness of the existence of positive Lyapunov exponents.
引用
收藏
页码:2405 / 2428
页数:23
相关论文
共 50 条