The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter

被引:0
|
作者
Li Ying Kang
Jing Wang
Er Fang Shan
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
关键词
Unicyclic hypergraph; α-spectral radius; principal eigenvector; diameter; pendant edge; 05C50; 05C65; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 ≤ α < 1, the α-spectral radius of an r-uniform hypergraph G is the spectral radius of Aα(G)=αD(G)+(1−α)A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal A}_\alpha}(G) = \alpha {\cal D}(G) + (1 - \alpha){\cal A}(G)$$\end{document}, where D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}(G)$$\end{document} and A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}(G)$$\end{document} are the diagonal tensor of degrees and adjacency tensor of G, respectively. In this paper, we show the perturbation of α-spectral radius by contracting an edge. Then we determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with fixed diameter. We also determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with given number of pendant edges.
引用
收藏
页码:924 / 936
页数:12
相关论文
共 50 条
  • [41] On the spectral radius of weighted trees with fixed diameter and weight set
    Tan, Shang-wang
    Yao, Yan-hong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 86 - 98
  • [42] On the signless Laplacian spectral radius of bicyclic graphs with fixed diameter
    Pai, Xinying
    Liu, Sanyang
    ARS COMBINATORIA, 2017, 130 : 249 - 265
  • [43] Maximizing Laplacian spectral radius over trees with fixed diameter
    Lal, A. K.
    Patra, K. L.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (05): : 457 - 461
  • [44] The maximum spectral radius of k-uniform hypergraphs with r pendent vertices
    Zhang, Jianbin
    Li, Jianping
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05): : 1062 - 1073
  • [45] The Laplacian Spectral Radius of a Class of Unicyclic Graphs
    Zhang, Haixia
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [46] The Signless Dirichlet Spectral Radius of Unicyclic Graphs
    Guangjun ZHANG
    Weixia LI
    Journal of Mathematical Research with Applications, 2017, 37 (03) : 262 - 266
  • [47] On the Randic index of unicyclic graphs with fixed diameter
    Song, Mingjun
    Pan, Xiang-Feng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 523 - 538
  • [48] Extreme Sombor Spectral Radius of Unicyclic Graphs
    Mei, Yinzhen
    Fu, Huifeng
    Miao, Hongli
    Gao, Yubin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (02) : 513 - 532
  • [49] Spectral radius and matching number of the unicyclic hypergraph
    Yu, Guanglong
    Yan, Chao
    Sun, Lin
    Wu, Yarong
    Zhang, Hailiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 : 571 - 590
  • [50] Connected hypergraphs with small spectral radius
    Lu, Linyuan
    Man, Shoudong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 509 : 206 - 227