The Maximum α-spectral Radius of Unicyclic Hypergraphs with Fixed Diameter

被引:0
|
作者
Li Ying Kang
Jing Wang
Er Fang Shan
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
关键词
Unicyclic hypergraph; α-spectral radius; principal eigenvector; diameter; pendant edge; 05C50; 05C65; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For 0 ≤ α < 1, the α-spectral radius of an r-uniform hypergraph G is the spectral radius of Aα(G)=αD(G)+(1−α)A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal A}_\alpha}(G) = \alpha {\cal D}(G) + (1 - \alpha){\cal A}(G)$$\end{document}, where D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal D}(G)$$\end{document} and A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}(G)$$\end{document} are the diagonal tensor of degrees and adjacency tensor of G, respectively. In this paper, we show the perturbation of α-spectral radius by contracting an edge. Then we determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with fixed diameter. We also determine the unique unicyclic hypergraph with the maximum α-spectral radius among all r-uniform unicyclic hypergraphs with given number of pendant edges.
引用
收藏
页码:924 / 936
页数:12
相关论文
共 50 条
  • [21] On the spectral radius of tricyclic graphs with a fixed diameter
    Geng, Xianya
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (01): : 41 - 56
  • [22] Maximum spectral radius of outerplanar 3-uniform hypergraphs
    Ellingham, M. N.
    Lu, Linyuan
    Wang, Zhiyu
    JOURNAL OF GRAPH THEORY, 2022, 100 (04) : 671 - 685
  • [23] ON THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH FIXED MATCHING NUMBER
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 97 (111): : 187 - 197
  • [24] On the spectral radius of unicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 97 - 109
  • [25] The maximum spectral radius of uniform hypergraphs with given number of pendant edges
    Xiao, Peng
    Wang, Ligong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (07): : 1392 - 1403
  • [26] A lower bound for the spectral radius of graphs with fixed diameter
    Cioaba, Sebastian M.
    van Dam, Edwin R.
    Koolen, Jack H.
    Lee, Jae-Ho
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (06) : 1560 - 1566
  • [27] Unicyclic Graphs of Minimal Spectral Radius
    Ling Sheng SHI
    Acta Mathematica Sinica,English Series, 2013, (02) : 281 - 286
  • [28] Unicyclic graphs of minimal spectral radius
    Shi, Ling Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 281 - 286
  • [29] Unicyclic graphs of minimal spectral radius
    Ling Sheng Shi
    Acta Mathematica Sinica, English Series, 2013, 29 : 281 - 286
  • [30] Unicyclic Graphs of Minimal Spectral Radius
    Ling Sheng SHI
    数学学报, 2013, 56 (02) : 293 - 293